ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy ions and parton saturation from RHIC to LHC

117   0   0.0 ( 0 )
 نشر من قبل Andrea Dainese
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Andrea Dainese




اسأل ChatGPT حول البحث

The phenomenology of gluon saturation at small parton momentum fraction, Bjorken-x, in the proton and in the nucleus is introduced. The experimentally-accessible kinematic domains at the nucleus-nucleus colliders RHIC and LHC are discussed. Finally, the saturation hints emerging from measurements at RHIC and the perspectives for LHC are described.



قيم البحث

اقرأ أيضاً

285 - M. Monteno 2011
The stochastic dynamics of c and b quarks in the fireball created in nucleus-nucleus collisions at RHIC and LHC is studied employing a relativistic Langevin equation, based on a picture of multiple uncorrelated random collisions with the medium. Heav y-quark transport coefficients are evaluated within a pQCD approach, with a proper HTL resummation of medium effects for soft scatterings. The Langevin equation is embedded in a multi-step setup developed to study heavy-flavor observables in pp and AA collisions, starting from a NLO pQCD calculation of initial heavy-quark yields, complemented in the nuclear case by shadowing corrections, k_T-broadening and nuclear geometry effects. Then, only for AA collisions, the Langevin equation is solved numerically in a background medium described by relativistic hydrodynamics. Finally, the propagated heavy quarks are made hadronize and decay into electrons. Results for the nuclear modification factor R_AA of heavy-flavor hadrons and electrons from their semi-leptonic decays are provided, both for RHIC and LHC beam energies.
We discuss recent applications of the partonic pQCD based cascade model BAMPS with focus on heavy-ion phenomeneology in hard and soft momentum range. The nuclear modification factor as well as elliptic flow are calculated in BAMPS for RHIC end LHC en ergies. These observables are also discussed within the same framework for charm and bottom quarks. Contributing to the recent jet-quenching investigations we present first preliminary results on application of jet reconstruction algorithms in BAMPS. Finally, collective effects induced by jets are investigated: we demonstrate the development of Mach cones in ideal matter as well in the highly viscous regime.
We study the charged particle and transverse energy production mechanism from AGS, SPS, RHIC to LHC energies in the framework of nucleon and quark participants. At RHIC and LHC energies, the number of nucleons-normalized charged particle and transver se energy density in pseudorapidity, which shows a monotonic rise with centrality, turns out to be an almost centrality independent scaling behaviour when normalized to the number of participant quarks. A universal function which is a combination of logarithmic and power-law, describes well the charged particle and transverse energy production both at nucleon and quark participant level for the whole range of collision energies. Energy dependent production mechanisms are discussed both for nucleonic and partonic level. Predictions are made for the pseudorapidity densities of transverse energy, charged particle multiplicity and their ratio (the barometric observable, $frac{dE_{rm{T}}/deta}{dN_{rm{ch}}/deta} ~equiv frac{E_{rm{T}}}{N_{rm{ch}}}$) at mid-rapidity for Pb+Pb collisions at $sqrt{s_{rm{NN}}}=5.5$ TeV. A comparison with models based on gluon saturation and statistical hadron gas is made for the energy dependence of $frac{E_{rm{T}}}{N_{rm{ch}}}$.
This document collects the proceedings of the Parton Radiation and Fragmentation from LHC to FCC-ee workshop (http://indico.cern.ch/e/ee_jets16) held at CERN in Nov. 2016. The writeup reviews the latest theoretical and experimental developments on pa rton radiation and parton-hadron fragmentation studies --including analyses of LEP, B-factories, and LHC data-- with a focus on the future perspectives reacheable in $e^+e^-$ measurements at the Future Circular Collider (FCC-ee), with multi-ab$^{-1}$ integrated luminosities yielding 10$^{12}$ and 10$^{8}$ jets from Z and W bosons decays as well as 10$^5$ gluon jets from Higgs boson decays. The main topics discussed are: (i) parton radiation and parton-to-hadron fragmentation functions (splitting functions at NNLO, small-$z$ NNLL resummations, global FF fits including Monte Carlo (MC) and neural-network analyses of the latest Belle/BaBar high-precision data, parton shower MC generators), (ii) jet properties (quark-gluon discrimination, $e^+e^-$ event shapes and multi-jet rates at NNLO+N$^{n}$LL, jet broadening and angularities, jet substructure at small-radius, jet charge determination, $e^+e^-$ jet reconstruction algorithms), (iii) heavy-quark jets (dead cone effect, charm-bottom separation, gluon-to-$bbar{b}$ splitting), and (iv) non-perturbative QCD phenomena (colour reconnection, baryon and strangeness production, Bose-Einstein and Fermi-Dirac final-state correlations, colour string dynamics: spin effects, helix hadronization).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا