ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of inter-edge superexchange in zigzag edge magnetism

119   0   0.0 ( 0 )
 نشر من قبل Jeil Jung
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A graphene nanoribbon with zigzag edges has a gapped magnetic ground state with an antiferromagnetic inter-edge superexchange interaction. We present a theory based on asymptotic properties of the Dirac-model ribbon wavefunction which predicts $W^{-2}$ and $W^{-1}$ ribbon-width dependencies for the superexchange interaction strength and the charge gap respectively. We find that, unlike the case of conventional atomic scale superexchange, opposite spin-orientations on opposite edges of the ribbon are favored by both kinetic and interaction energies.



قيم البحث

اقرأ أيضاً

264 - S. Krompiewski 2014
It is shown that apart from well-known factors, like temperature, substrate, and edge reconstruction effects, also the presence of external contacts is destructive for the formation of magnetic moments at the edges of graphene nanoribbons. The edge m agnetism gradually decreases when graphene/electrode interfaces become more and more transparent for electrons. In addition to the graphene/electrode coupling strength, also the aspect ratio parameter, i.e. a width/length ratio of the graphene nanoribbon, is crucial for the suppression of edge magnetism. The present theory uses a tight-binding method, based on the mean-field Hubbard Hamiltonian for $pi$ electrons, and the Greens function technique within the Landauer-Buttiker approach.
108 - Manuel J. Schmidt 2012
A bosonic field theory is derived for the tunable edge magnetism at graphene zigzag edges. The derivation starts from an effective fermionic theory for the interacting graphene edge states, derived previously from a two-dimensional interacting tight- binding model for graphene. The essential feature of this effective model, which gives rise to the weak edge magnetism, is the momentum-dependent non-local electron-electron interaction. It is shown that this momentum-dependence may be treated by an extension of the bosonization technique, and leads to interactions of the bosonic fields. These interactions are reminiscent of a phi^4 field theory. Focussing onto the regime close to the quantum phase transition between the ferromagnetic and the paramagnetic Luttinger liquid, a semiclassical interpretation of the interacting bosonic theory is given. Furthermore, it is argued that the universal critical behavior at the quantum phase transition between the paramagnetic and the ferromagnetic Luttinger liquid is governed by a small number of terms in this theory, which are accessible by quantum Monte-Carlo methods.
It is argued that the subtle crossover from decoherence-dominated classical magnetism to fluctuation-dominated quantum magnetism is experimentally accessible in graphene nanoribbons. We show that the width of a nanoribbon determines whether the edge magnetism is on the classical side, on the quantum side, or in between. In the classical regime, decoherence is dominant and leads to static spin polarizations at the ribbon edges, which are well described by mean-field theories. The quantum Zeno effect is identified as the basic mechanism which is responsible for the spin polarization and thereby enables the application of graphene in spintronics. On the quantum side, however, the spin polarization is destroyed by dynamical processes. The great tunability of graphene magnetism thus offers a viable route for the study of the quantum-classical crossover.
142 - H. Sevincli , G. Cuniberti 2009
We investigate electron and phonon transport through edge disordered zigzag graphene nanoribbons based on the same methodological tool of nonequilibrium Green functions. We show that edge disorder dramatically reduces phonon thermal transport while b eing only weakly detrimental to electronic conduction. The behavior of the electronic and phononic elastic mean free paths points to the possibility of realizing an electron-crystal coexisting with a phonon-glass. The calculated thermoelectric figure of merit (ZT) values qualify zigzag graphene nanoribbons as a very promising material for thermoelectric applications.
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in carbon-based spintronics. Zigzag graphene nanoribbons (ZGNRs), quasi one-dimensional semiconductin g strips of graphene featuring two parallel zigzag edges along the main axis of the ribbon, are predicted to host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width. Despite recent advances in the bottom-up synthesis of atomically-precise ZGNRs, their unique electronic structure has thus far been obscured from direct observations by the innate chemical reactivity of spin-ordered edge states. Here we present a general technique for passivating the chemically highly reactive spin-polarized edge states by introducing a superlattice of substitutional nitrogen-dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunneling spectroscopy reveal a giant spin splitting of the low-lying nitrogen lone-pair flat bands by a large exchange field (~850 Tesla) induced by the spin-polarized ferromagnetically ordered edges of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا