ترغب بنشر مسار تعليمي؟ اضغط هنا

PDE-Foam - a probability-density estimation method using self-adapting phase-space binning

191   0   0.0 ( 0 )
 نشر من قبل Dominik Dannheim
 تاريخ النشر 2009
والبحث باللغة English




اسأل ChatGPT حول البحث

Probability Density Estimation (PDE) is a multivariate discrimination technique based on sampling signal and background densities defined by event samples from data or Monte-Carlo (MC) simulations in a multi-dimensional phase space. In this paper, we present a modification of the PDE method that uses a self-adapting binning method to divide the multi-dimensional phase space in a finite number of hyper-rectangles (cells). The binning algorithm adjusts the size and position of a predefined number of cells inside the multi-dimensional phase space, minimising the variance of the signal and background densities inside the cells. The implementation of the binning algorithm PDE-Foam is based on the MC event-generation package Foam. We present performance results for representative examples (toy models) and discuss the dependence of the obtained results on the choice of parameters. The new PDE-Foam shows improved classification capability for small training samples and reduced classification time compared to the original PDE method based on range searching.



قيم البحث

اقرأ أيضاً

We examine the problem of construction of confidence intervals within the basic single-parameter, single-iteration variation of the method of quasi-optimal weights. Two kinds of distortions of such intervals due to insufficiently large samples are ex amined, both allowing an analytical investigation. First, a criterion is developed for validity of the assumption of asymptotic normality together with a recipe for the corresponding corrections. Second, a method is derived to take into account the systematic shift of the confidence interval due to the non-linearity of the theoretical mean of the weight as a function of the parameter to be estimated. A numerical example illustrates the two corrections.
Adaptive gradient methods such as Adam have been shown to be very effective for training deep neural networks (DNNs) by tracking the second moment of gradients to compute the individual learning rates. Differently from existing methods, we make use o f the most recent first moment of gradients to compute the individual learning rates per iteration. The motivation behind it is that the dynamic variation of the first moment of gradients may provide useful information to obtain the learning rates. We refer to the new method as the rapidly adapting moment estimation (RAME). The theoretical convergence of deterministic RAME is studied by using an analysis similar to the one used in [1] for Adam. Experimental results for training a number of DNNs show promising performance of RAME w.r.t. the convergence speed and generalization performance compared to the stochastic heavy-ball (SHB) method, Adam, and RMSprop.
Fitting probabilistic models to data is often difficult, due to the general intractability of the partition function. We propose a new parameter fitting method, Minimum Probability Flow (MPF), which is applicable to any parametric model. We demonstra te parameter estimation using MPF in two cases: a continuous state space model, and an Ising spin glass. In the latter case it outperforms current techniques by at least an order of magnitude in convergence time with lower error in the recovered coupling parameters.
We present a convex-concave reformulation of the reversible Markov chain estimation problem and outline an efficient numerical scheme for the solution of the resulting problem based on a primal-dual interior point method for monotone variational ineq ualities. Extensions to situations in which information about the stationary vector is available can also be solved via the convex- concave reformulation. The method can be generalized and applied to the discrete transition matrix reweighting analysis method to perform inference from independent chains with specified couplings between the stationary probabilities. The proposed approach offers a significant speed-up compared to a fixed-point iteration for a number of relevant applications.
Recently, a Monte Carlo method has been presented which allows for the form-free retrieval of size distributions from isotropic scattering patterns, complete with uncertainty estimates linked to the data quality. Here, we present an adaptation to thi s method allowing for the fitting of anisotropic 2D scattering patterns. The model consists of a finite number of non-interacting ellipsoids of revolution (but would work equally well for cylinders), polydisperse in both dimensions, and takes into account disorientation in the plane parallel to the detector plane. The method application results in three form-free distributions, two for the ellipsoid dimensions, and one for the orientation distribution. It is furthermore shown that a morphological restriction is needed to obtain a unique solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا