Subdiffusive transport in tilted washboard potentials is studied within the fractional Fokker-Planck equation approach, using the associated continuous time random walk (CTRW) framework. The scaled subvelocity is shown to obey a universal law, assuming the form of a stationary Levy-stable distribution. The latter is defined by the index of subdiffusion alpha and the mean subvelocity only, but interestingly depends neither on the bias strength nor on the specific form of the potential. These scaled, universal subvelocity fluctuations emerge due to the weak ergodicity breaking and are vanishing in the limit of normal diffusion. The results of the analytical heuristic theory are corroborated by Monte Carlo simulations of the underlying CTRW.