ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007--2008 credit crisis

166   0   0.0 ( 0 )
 نشر من قبل Daniel Fenn
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using dynamical community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.



قيم البحث

اقرأ أيضاً

We investigate the relative market efficiency in financial market data, using the approximate entropy(ApEn) method for a quantification of randomness in time series. We used the global foreign exchange market indices for 17 countries during two perio ds from 1984 to 1998 and from 1999 to 2004 in order to study the efficiency of various foreign exchange markets around the market crisis. We found that on average, the ApEn values for European and North American foreign exchange markets are larger than those for African and Asian ones except Japan. We also found that the ApEn for Asian markets increase significantly after the Asian currency crisis. Our results suggest that the markets with a larger liquidity such as European and North American foreign exchange markets have a higher market efficiency than those with a smaller liquidity such as the African and Asian ones except Japan.
61 - A. Sarkar , P. Barat 2005
In this paper we investigate the scaling behavior of the average daily exchange rate returns of the Indian Rupee against four foreign currencies namely US Dollar, Euro, Great Britain Pound and Japanese Yen. Average daily exchange rate return of the I ndian Rupee against US Dollar is found to exhibit a persistent scaling behavior and follow Levy stable distribution. On the contrary the average daily exchange rate returns of the other three foreign currencies do not show persistency or antipersistency and follow Gaussian distribution.
We discuss price variations distributions in foreign exchange markets, characterizing them both in calendar and business time frameworks. The price dynamics is found to be the result of two distinct processes, a multi-variance diffusion and an error process. The presence of the latter, which dominates at short time scales, leads to indeterminacy principle in finance. Furthermore, dynamics does not allow for a scheme based on independent probability distributions, since volatility exhibits a strong correlation even at the shortest time scales.
We investigate intra-day foreign exchange (FX) time series using the inverse statistic analysis developed in [1,2]. Specifically, we study the time-averaged distributions of waiting times needed to obtain a certain increase (decrease) $rho$ in the pr ice of an investment. The analysis is performed for the Deutsch mark (DM) against the $US for the full year of 1998, but similar results are obtained for the Japanese Yen against the $US. With high statistical significance, the presence of resonance peaks in the waiting time distributions is established. Such peaks are a consequence of the trading habits of the markets participants as they are not present in the corresponding tick (business) waiting time distributions. Furthermore, a new {em stylized fact}, is observed for the waiting time distribution in the form of a power law Pdf. This result is achieved by rescaling of the physical waiting time by the corresponding tick time thereby partially removing scale dependent features of the market activity.
We analyze several florae (collections of plant species populating specific areas) in different geographic and climatic regions. For every list of species we produce a taxonomic classification tree and we consider its statistical properties. We find that regardless of the geographical location, the climate and the environment all species collections have universal statistical properties that we show to be also robust in time. We then compare observed data sets with simulated communities obtained by randomly sampling a large pool of species from all over the world. We find differences in the behavior of the statistical properties of the corresponding taxonomic trees. Our results suggest that it is possible to distinguish quantitatively real species assemblages from random collections and thus demonstrate the existence of correlations between species.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا