ﻻ يوجد ملخص باللغة العربية
We demonstrate accurate single-qubit control in an ensemble of atomic qubits trapped in an optical lattice. The qubits are driven with microwave radiation, and their dynamics tracked by optical probe polarimetry. Real-time diagnostics is crucial to minimize systematic errors and optimize the performance of single-qubit gates, leading to fidelities of 0.99 for single-qubit pi rotations. We show that increased robustness to large, deliberately introduced errors can be achieved through the use of composite rotations. However, during normal operation the combination of very small intrinsic errors and additional decoherence during the longer pulse sequences precludes any significant performance gain in our current experiment.
The establishment of a scalable scheme for quantum computing with addressable and long-lived qubits would be a scientific watershed, harnessing the laws of quantum physics to solve classically intractable problems. The design of many proposed quantum
Quantum computing has been attracting tremendous efforts in recent years. One prominent application is to perform quantum simulations of electron correlations in large molecules and solid-state materials, where orbital degrees of freedom are crucial
We present experimental results on two-qubit Rydberg blockade quantum gates and entanglement in a two-dimensional qubit array. Without post selection against atom loss we achieve a Bell state fidelity of $0.73pm 0.05$, the highest value reported to d
As the field of quantum computing progresses to larger-scale devices, multiplexing will be crucial to scale quantum processors. While multiplexed readout is common practice for superconducting devices, relatively little work has been reported about t
The real-time flux dynamics of up to three superconducting quantum interference devices (SQUIDs) are studied by numerically solving the time-dependent Schrodinger equation. The numerical results are used to scrutinize the mapping of the flux degrees