ترغب بنشر مسار تعليمي؟ اضغط هنا

Purely twistorial string with canonical twistor field quantization

123   0   0.0 ( 0 )
 نشر من قبل Sergey Fedoruk
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce new purely twistorial scale-invariant action describing the composite bosonic D=4 Nambu-Goto string with target space parametrized by the pair of D=4 twistors. We show that by suitable gauge fixing of local scaling one gets the bilinear twistorial action and canonical quantization rules for the two-dimensional twistor-string fields. We consider the Poisson brackets of all constraints characterizing our model and we obtain four first class constraints describing two Virasoro constraints and two U(1)xU(1) Kac-Moody (KM) local phase transformations.



قيم البحث

اقرأ أيضاً

Witten has recently proposed a string theory in twistor space whose D-instanton contributions are conjectured to compute N=4 super-Yang-Mills scattering amplitudes. An alternative string theory in twistor space was then proposed whose open string tre e amplitudes reproduce the D-instanton computations of maximal degree in Wittens model. In this paper, a cubic open string field theory action is constructed for this alternative string in twistor space, and is shown to be invariant under parity transformations which exchange MHV and googly amplitudes. Since the string field theory action is gauge-invariant and reproduces the correct cubic super-Yang-Mills interactions, it provides strong support for the conjecture that the string theory correctly computes N-point super-Yang-Mills tree amplitudes.
94 - Hayun Park , Taejin Lee 2019
The canonical quantization of a massive symmetric rank-two tensor in string theory, which contains two Stueckelberg fields, was studied. As a preliminary study, we performed a canonical quantization of the Proca model to describe a massive vector par ticle that shares common properties with the massive symmetric rank-two tensor model. By performing a canonical analysis of the Lagrangian, which describes the symmetric rank-two tensor, obtained by Siegel and Zwiebach (SZ) from string field theory, we deduced that the Lagrangian possesses only first class constraints that generate local gauge transformation. By explicit calculations, we show that the massive symmetric rank-two tensor theory is gauge invariant only in the critical dimension of open bosonic string theory, i.e., $d=26$. This emphasizes that the origin of local symmetry is the nilpotency of the Becchi-Rouet-Stora-Tyutin (BRST) operator, which is valid only in the critical dimension. For a particular gauge imposed on the Stueckelberg fields, the gauge-invariant Lagrangian of the SZ model reduces to the Fierz-Pauli Lagrangian of a massive spin-two particle. Thus, the Fierz-Pauli Lagrangian is a gauge-fixed version of the gauge-invariant Lagrangian for a massive symmetric rank-two tensor. By noting that the Fierz-Pauli Lagrangian is not suitable for studying massive spin-two particles with small masses, we propose the transverse-traceless (TT) gauge to quantize the SZ model as an alternative gauge condition. In the TT gauge, the two Stueckelberg fields can be decoupled from the symmetric rank-two tensor and integrated trivially. The massive spin-two particle can be described by the SZ model in the TT gauge, where the propagator of the massive spin-two particle has a well-defined massless limit.
103 - Dorothea Bahns 2004
It is shown that the algebra of diffeomorphism-invariant charges of the Nambu-Goto string cannot be quantized in the framework of canonical quantization. The argument is shown to be independent of the dimension of the underlying Minkowski space.
A method of constructing a canonical gauge invariant quantum formulation for a non-gauge classical theory depending on a set of parameters is advanced and then applied to the theory of closed bosonic string interacting with massive background fields. It is shown that within the proposed formulation the correct linear equations of motion for background fields arise.
We propose a way to encode acceleration directly into quantum fields, establishing a new class of fields. Accelerated quantum fields, as we have named them, have some very interesting properties. The most important is that they provide a mathematical ly consistent way to quantize space-time in the same way that energy and momentum are quantized in standard quantum field theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا