ﻻ يوجد ملخص باللغة العربية
We consider the metric perturbations around a stationary rotating Nambu-Goto string in Minkowski spacetime. By solving the linearized Einstein equations, we study the effects of azimuthal frame-dragging around the rotation axis and linear frame-dragging along the rotation axis, the Newtonian logarithmic potential, and the angular deficit around the string as the potential mode. We also investigate gravitational waves propagating off the string and propagating along the string, and show that the stationary rotating string emits gravitational waves toward the directions specified by discrete angles from the rotation axis. Waveforms, polarizations, and amplitudes which depend on the direction are shown explicitly.
The electromagnetic field correlators are evaluated around a cosmic string in background of $(D+1)$-dimensional dS spacetime assuming that the field is prepared in the Bunch-Davies vacuum state. The correlators are presented in the decomposed form wh
We investigate topological effects of a cosmic string and compactification of a spatial dimension on the vacuum expectation value (VEV) of the energy-momentum tensor for a fermionic field in (4+1)-dimensional locally AdS spacetime. The contribution i
We study the interior of distorted stationary rotating black holes on the example of a Kerr black hole distorted by external static and axisymmetric mass distribution. We show that there is a duality transformation between the outer and inner horizon
We identify a set of Hertz potentials for solutions to the vector wave equation on black hole spacetimes. The Hertz potentials yield Lorenz gauge electromagnetic vector potentials that represent physical solutions to the Maxwell equations, satisfy th
We analyze rigidly rotating Nambu--Goto strings in the Kerr spacetime, particularly focusing on the strings sticking in the horizon. From the regularity on the horizon, we find the condition for sticking in the horizon, which is consistent with the s