ﻻ يوجد ملخص باللغة العربية
We develop a description of diffusion limited growth in solid-solid transformations, which are strongly influenced by elastic effects. Density differences and structural transformations provoke stresses at interfaces, which affect the phase equilibrium conditions. We formulate equations for the interface kinetics similar to dendritic growth and study the growth of a stable phase from a metastable solid in both a channel geometry and in free space. We perform sharp interface calculations based on Greens function methods and phase field simulations, supplemented by analytical investigations. For pure dilatational transformations we find a single growing finger with symmetry breaking at higher driving forces, whereas for shear transformations the emergence of twin structures can be favorable. We predict the steady state shapes and propagation velocities, which can be higher than in conventional dendritic growth.
A nonlinear PDE featuring flux limitation effects together with those of the porous media equation (nonlinear Fokker-Planck) is presented in this paper. We analyze the balance of such diverse effects through the study of the existence and qualitative
We present a model for the interplay between the fundamental phenomena responsible for the formation of nanostructures by metalorganic vapour phase epitaxy on patterned (001)/(111)B GaAs substrates. Experiments have demonstrated that V-groove quantum
Polymeric nanoparticles (NPs) have a great application potential in science and technology. Their functionality strongly depends on their size. We present a theory for the size of NPs formed by precipitation of polymers into a bad solvent in the pres
We develop continuum theory of self-assembly and pattern formation in metallic microparticles immersed in a poorly conducting liquid in DC electric field. The theory is formulated in terms of two conservation laws for the densities of immobile partic
A microscopic model of the effect of unbinding in diffusion limited aggregation based on a cellular automata approach is presented. The geometry resembles electrochemical deposition - ``ions diffuse at random from the top of a container until encount