ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge-singlet dark matter in a left-right symmetric model with spontaneous CP violation

240   0   0.0 ( 0 )
 نشر من قبل Yu-Feng Zhou
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a dark matter (DM) scenario in an extension of a left-right symmetric model with a gauge-singlet scalar field. The gauge-singlet scalar can automatically become a DM candidate, provided that both P and CP symmetries are only broken spontaneously. Thus no extra discrete symmetries are needed to make the DM candidate stable. After constraining the model parameters from the observed relic DM density we make predictions for direct detection experiments. We show that for some parameter range, the predicted WIMP-nucleon elastic scattering cross section can reach the current experimental upper bound, which can be tested by the experiments in the near future.



قيم البحث

اقرأ أيضاً

161 - Yue-Liang Wu 2008
A left-right symmetric model with two Higgs bi-doublet is shown to be a consistent model for both spontaneous P and CP violation. The flavor changing neutral currents can be suppressed by the mechanism of approximate global U(1) family symmetry. We c alculate the constraints from neural $K$ meson mass difference $Delta m_K$ and demonstrate that a right-handed gauge boson $W_2$ contribution in box-diagrams with mass well below 1 TeV is allowed due to a cancellation caused by a light charged Higgs boson with a mass range $150 sim 300$ GeV. The $W_2$ contribution to $epsilon_K$ can be suppressed from appropriate choice of additional CP phases appearing in the right-handed Cabbibo-Kobayashi-Maskawa matrix. The model is also found to be fully consistent with $B^0$ mass difference $Delta m_B$, and the mixing-induced CP violation quantity $sin2beta_{J/psi}$, which is usually difficult for the model with only one Higgs bi-doublet. The new physics beyond the standard model can be directly searched at the colliders LHC and ILC.
We perform a thermal unflavored leptogenesis analysis on minimal left-right symmetric models with discrete left-right symmetry identified as generalized parity or charge conjugation. When left-right symmetry is unbroken in the lepton Yukawa sector, t he neutrino Dirac coupling matrix is completely determined by neutrino masses and mixing angles, allowing CP violation needed to generate leptogenesis totally resides in the low-energy sector. With two lepton asymmetry generation ways, both type I and mixed type I$+$II neutrino mass generation mechanisms are considered. After solving the Boltzmann equations numerically, we find that the low-energy CP phases in the lepton mixing matrix can successfully produce the observed baryon asymmetry, and in some cases, the Dirac CP phase can be the only source of CP violation. Finally, we discuss the interplay among low-energy CP phase measurements, leptogenesis, and neutrinoless double beta decay. We show that the viable models for successful leptogenesis can be probed in next-generation neutrinoless double-beta decay experiments.
66 - P. V. Dong , D. T. Huong 2016
We argue that dark matter can automatically arise from a gauge theory that possesses a non-minimal left-right gauge symmetry, SU(3)_C otimes SU(M)_L otimes SU(N)_R otimes U(1)_X, for (M,N) = (2,3), (3,2), (3,3), cdots, and (5,5).
In the framework of Left-Right symmetric model, we investigate an interesting scenario, in which the so-called VEV seesaw problem can be naturally solved with Z_2 symmetry. In such a scenario, we find a pair of stable weakly interacting massive parti cles (WIMPs), which may be the cold dark matter candidates. However, the WIMP-nucleon cross section is 3-5 orders of magnitude above the present upper bounds from the direct dark matter detection experiments for $m sim 10^2-10^4 $ GeV. As a result, the relic number density of two stable particles has to be strongly suppressed to a very small level. Nevertheless, our analysis shows that this scenario cant provide very large annihilation cross sections so as to give the desired relic abundance except for the resonance case. Only for the case if the rotation curves of disk galaxies are explained by the Modified Newtonian Dynamics (MOND), the stable WIMPs could be as the candidates of cold dark matter.
We did a model independent phenomenological study of baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) and charged lepton flavour violation (CLFV) in a generic left-right symmetric model (LRSM) where neutrino mass originates from t he type I + type II seesaw mechanism. We studied the new physics contributions to NDBD coming from the left-right gauge boson mixing and the heavy neutrino contribution within the framework of LRSM. We have considered the mass of the RH gauge boson to be specifically 5 TeV, 10 TeV and 18 TeV and studied the effects of the new physics contributions on the effective mass and baryogenesis and compared with the current experimental limit. We tried to correlate the cosmological BAU from resonant leptogenesis with the low energy observables, notably, NDBD and LFV with a view to finding a common parameter space where they coexists.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا