The lattice provides a powerful tool to non-perturbatively investigate strongly coupled supersymmetric Yang-Mills (SYM) theories. The pure SU(2) SYM theory with one supercharge is simulated on large lattices with small Majorana gluino masses down to about $am_{tilde g}=0.068$ with lattice spacing $asimeq 0.125$ fm. The gluino dynamics is simulated by the Two-Step Multi-Boson (TSMB) and the Two-Step Polynomial Hybrid Monte Carlo (TS-PHMC) algorithms. Supersymmetry (SUSY) is broken explicitly by the lattice and the Wilson term and softly by the presence of a non-vanishing gluino mass. However, the recovery of SUSY is expected in the infinite volume continuum limit by tuning the bare parameters to the SUSY point in the parameter space. This scenario is studied by the determination of the low-energy mass spectrum and by means of lattice SUSY Ward-Identities (WIs).