ﻻ يوجد ملخص باللغة العربية
We prove a generating function formula for the Betti numbers of Nakajima quiver varieties. We prove that it is a q-deformation of the Weyl-Kac character formula. In particular this implies that the constant term of the polynomial counting the number of absolutely indecomposable representations of a quiver equals the multiplicity of a a certain weight in the corresponding Kac-Moody algebra, which was conjectured by Kac in 1982.
We give an explicit description of the irreducible components of two-row Springer fibers in type A as closed subvarieties in certain Nakajima quiver varieties in terms of quiver representations. By taking invariants under a variety automorphism, we o
It is a remarkable theorem by Maffei--Nakajima that the Slodowy variety, which consists of certain complete flags, can be realized as certain Nakajima quiver variety of type A. However, the isomorphism is rather implicit as it takes to solve a system
An affine Lie algebra acts on cohomology groups of quiver varieties of affine type. A Heisenberg algebra acts on cohomology groups of Hilbert schemes of points on a minimal resolution of a Kleinian singularity. We show that in the case of type $A$ th
We present a conjecture generalizing the Cauchy formula for Macdonald polynomials. This conjecture encodes the mixed Hodge polynomials of the character varieties of representations of the fundamental group of a Riemann surface of genus g to GL_n(C) w
We study connections between the topology of generic character varieties of fundamental groups of punctured Riemann surfaces, Macdonald polynomials, quiver representations, Hilbert schemes on surfaces, modular forms and multiplicities in tensor produ