ترغب بنشر مسار تعليمي؟ اضغط هنا

Designing lattice structures with maximal nearest-neighbor entanglement

87   0   0.0 ( 0 )
 نشر من قبل Roman Lopez-Sandoval
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we study the numerical optimization of nearest-neighbor concurrence of bipartite one and two dimensional lattices, as well as non bipartite two dimensional lattices. These systems are described in the framework of a tight-binding Hamiltonian while the optimization of concurrence was performed using genetic algorithms. Our results show that the concurrence of the optimized lattice structures is considerably higher than that of non optimized systems. In the case of one dimensional chains the concurrence is maximized when the system begins to dimerize, i.e. it undergoes a structural phase transition (Peierls distortion). This result is consistent with the idea that entanglement is maximal or shows a singularity near quantum phase transitions and that quantum entanglement cannot be freely shared between many objects (monogamy property). Moreover, the optimization of concurrence in two-dimensional bipartite and non bipartite lattices is achieved when the structures break into smaller subsystems, which are arranged in geometrically distinguishable configurations. This behavior is again related to the monogamy property.



قيم البحث

اقرأ أيضاً

We overcome the diffraction limit in fluorescence imaging of neutral atoms in a sparsely filled one-dimensional optical lattice. At a periodicity of 433 nm, we reliably infer the separation of two atoms down to nearest neighbors. We observe light ind uced losses of atoms occupying the same lattice site, while for atoms in adjacent lattice sites, no losses due to light induced interactions occur. Our method points towards characterization of correlated quantum states in optical lattice systems with filling factors of up to one atom per lattice site.
103 - Zhixin Wang , Xiu Gu , Lian-Ao Wu 2014
Although a universal quantum computer is still far from reach, the tremendous advances in controllable quantum devices, in particular with solid-state systems, make it possible to physically implement quantum simulators. Quantum simulators are physic al setups able to simulate other quantum systems efficiently that are intractable on classical computers. Based on solid-state qubit systems with various types of nearest-neighbor interactions, we propose a complete set of algorithms for simulating pairing Hamiltonians. Fidelity of the target states corresponding to each algorithm is numerically studied. We also compare algorithms designed for different types of experimentally available Hamiltonians and analyze their complexity. Furthermore, we design a measurement scheme to extract energy spectra from the simulators. Our simulation algorithms might be feasible with state-of-the-art technology in solid-state quantum devices.
The evolution of entanglement in a 3-spin chain with nearest-neighbor Heisenberg-XY interactions for different initial states is investigated here. In an NMR experimental implementation, we generate multipartite entangled states starting from initial separable pseudo-pure states by simulating nearest-neighbor XY interactions in a 3-spin linear chain of nuclear spin qubits. For simulating XY interactions, we follow algebraic method of Zhang et al. [Phys. Rev. A 72, 012331 (2005)]. Bell state between end qubits has been generated by using only the unitary evolution of the XY Hamiltonian. For generating W-state and GHZ-state a single qubit rotation is applied on second and all the three qubits respectively after the unitary evolution of the XY Hamiltonian.
The subject of this paper are operators represented on Fock spaces whose behavior on one level depends only on two of its neighbors. Our initial objective was to generalize (via a common framework) the results of arXiv:math/0702158, arXiv:0709.4334, arXiv:0812.0895, and arXiv:1003.2998, whose constructions exhibited this behavior. We extend a number of results from these papers to our more general setting. These include the quadratic relation satisfied by the free cumulant generating function (actually by a variant of it), the resolvent form of the generating function for the Wick polynomials, and classification results for the case when the vacuum state on the operator algebra is tracial. We are able to handle the generating functions in infinitely many variables by considering their matrix-valu
60 - Zhongzhi Zhang , Yuze Dong , 2015
Random walks including non-nearest-neighbor jumps appear in many real situations such as the diffusion of adatoms and have found numerous applications including PageRank search algorithm, however, related theoretical results are much less for this dy namical process. In this paper, we present a study of mixed random walks in a family of fractal scale-free networks, where both nearest-neighbor and next-nearest-neighbor jumps are included. We focus on trapping problem in the network family, which is a particular case of random walks with a perfect trap fixed at the central high-degree node. We derive analytical expressions for the average trapping time (ATT), a quantitative indicator measuring the efficiency of the trapping process, by using two different methods, the results of which are consistent with each other. Furthermore, we analytically determine all the eigenvalues and their multiplicities for the fundamental matrix characterizing the dynamical process. Our results show that although next-nearest-neighbor jumps have no effect on the leading sacling of the trapping efficiency, they can strongly affect the prefactor of ATT, providing insight into better understanding of random-walk process in complex systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا