ﻻ يوجد ملخص باللغة العربية
We introduce a function model for the Teichmuller space of a closed hyperbolic Riemann surface. Then we introduce a new metric by using the maximum norm on the function space on the Teichmuller space. We prove that the identity map from the Teichmuller space equipped with the usual Teichmuller metric to the Teichmuller space equipped with this new metric is uniformly continuous. Furthermore, we also prove that the inverse of the identity, that is, the identity map from the Teichmuller space equipped with this new metric to the Teichmuller space equipped with the usual Teichmuller metric, is continuous. Therefore, the topology induced by the new metric is just the same as the topology induced by the usual Teichmuller metric on the Teichmuller space. We give a remark about the pressure metric and the Weil-Petersson metric.
We construct an Ahlfors-Bers complex analytic model for the Teichmuller space of the universal hyperbolic lamination (also known as Sullivans Teichmuller space) and the renormalized Weil-Petersson metric on it as an extension of the usual one. In thi
We study the Weil-Petersson geometry for holomorphic families of Riemann Surfaces equipped with the unique conical metric of constant curvature -1.
This article gives a complex analysis lighting on the problem which consists in restoring a bordered connected riemaniann surface from its boundary and its Dirichlet-Neumann operator. The three aspects of this problem, unicity, reconstruction and characterization are approached.
We prove a quantitative estimate, with a power saving error term, for the number of simple closed geodesics of length at most $L$ on a compact surface equipped with a Riemannian metric of negative curvature. The proof relies on the exponential mixing rate for the Teichm{u}ller geodesic flow.
We investigate the translation lengths of group elements that arise in random walks on weakly hyperbolic groups. In particular, without any moment condition, we prove that non-elementary random walks exhibit at least linear growth of translation leng