ﻻ يوجد ملخص باللغة العربية
Recent experiments exhibit a rate-dependence for granular shear such that the stress grows linearly in the logarithm of the shear rate, dot{gamma}. Assuming a generalized activated process mechanism, we show that these observations are consistent with a recent proposal for a stress-based statistical ensemble. By contrast, predictions for rate-dependence using conventional energy-based statistical mechanics to describe activated processes, predicts a rate dependence that of (ln (dot{gamma}))^{1/2}.
The mechanics of cohesive or cemented granular materials is complex, combining the heterogeneous responses of granular media, like force chains, with clearly defined material properties. Here, we use a discrete element model (DEM) simulation, consist
We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasi-static and dynamical) shear-stress fluctuations as a function of temperature T and sampling time $Delta t$. The linear response is charac
We present experiments on slow shear flow in a split-bottom linear shear cell, filled with layered granular materials. Shearing through two different materials separated by a flat material boundary is shown to give narrow shear zones, which refract a
Recent experiments with rotational diffusion of a probe in a vibrated granular media revealed a rich scenario, ranging from the dilute gas to the dense liquid with cage effects and an unexpected superdiffusive behavior at large times. Here we setup a
We experimentally investigate the rheology and stress fluctuations of granules densely suspended in silicone oil. We find that both thickening strength and stress fluctuations significantly weaken with oil viscosity $eta_0$. Comparison of our rheolog