ترغب بنشر مسار تعليمي؟ اضغط هنا

Polaron relaxation and hopping conductivity in LaMn$_{1-x}$Fe$_{x}$O$_3$

83   0   0.0 ( 0 )
 نشر من قبل Arindam Karmakar
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dc and ac transport properties as well as electric modulus spectra have been investigated for the samples LaMn$_{1-x}$Fe$_{x}$O$_3$ with compositions 0 $leq x leq$ 1.0. The bulk dc resistivity shows a temperature variation consistent with the variable range hopping mechanism at low temperature and Arrhenius mechanism at high temperatures. The ac conductivity has been found to follow a power law behavior at a limited temperature and frequency region where Anderson-localization plays a significant role in the transport mechanism for all the compositions. At low temperatures large dc resistivities and dielectric relaxation behavior for all the compositions are consistent with the polaronic nature of the charge carriers. Scaling of the modulus spectra shows that the charge transport dynamics is independent of temperature for a particular composition but depends strongly on different compositions possibly due to different charge carrier concentrations and structural properties.



قيم البحث

اقرأ أيضاً

156 - G. Allodi , R. De Renzi , K. Zheng 2013
We report on an a $mu$SR and $^{55}$Mn NMR investigation of the magnetic order parameter as a function of temperature in the optimally doped La$_{5/8}$(Ca$_y$Sr$_{1-y}$)$_{3/8}$MnO$_3$ and in the underdoped La$_{1-x}$Sr$_{x}$MnO$_3$ and La$_{1-x}$Ca$ _{x}$MnO$_3$ metallic manganite families. The study is aimed at unraveling the effect of lattice distortions, implicitly controlled by the Ca-Sr isoelectronic substitution, from that of hole doping $x$ on the Curie temperature $T_c$ and the order of the magnetic transition. At optimal doping, the transitions are second order at all $y$ values, including the $y=1$ (La$_{5/8}$Ca$_{3/8}$MnO$_3$) end member. In contrast, they are first order in the underdoped samples, which show a finite (truncated) order parameter at the Curie point, including La$_{0.75}$Sr$_{0.25}$MnO$_3$ whose $T_c$ is much higher than that of La$_{5/8}$Ca$_{3/8}$MnO$_3$. The order parameter curves, on the other hand, exhibit a very minor dependence on $x$, if truncation is excepted. This suggests that the effective exchange interaction between Mn ions is essentially governed by local distortions, in agreement with the original double-exchange model, while truncation is primarily, if not entirely, an effect of under- or overdoping. A phase diagram, separating in the $x-y$ plane polaron-driven first order transitions from regular second order transitions governed by critical fluctuations, is proposed for the La$_{1-x}($Ca$_y$Sr$_{1-y}$)$_{x}$MnO$_3$ system.
We study the structural, magnetic, transport and electronic properties of LaCoO$_3$ with Sr/Nb co-substitution, i.e., La$_{(1-2x)}$Sr$_{2x}$Co$_{(1-x)}$Nb$_{x}$O$_3$ using x-ray and neutron diffraction, dc and ac-magnetization, neutron depolarization , dc-resistivity and photoemission measurements. The powder x-ray and neutron diffraction data were fitted well with the rhombohedral crystal symmetry (space group textit{R$bar{3}$c}) in Rietveld refinement analysis. The calculated effective magnetic moment ($approx$3.85~$mu_B$) and average spin ($approx$1.5) of Co ions from the analysis of magnetic susceptibility data are consistent with 3+ state of Co ions in intermediate-spin (IS) and high-spin (HS) states in the ratio of $approx$50:50, i.e., spin-state of Co$^{3+}$ is preserved at least up to $x=$ 0.1 sample. Interestingly, the magnetization values were significantly increased with respect to the $x=$ 0 sample, and the M-H curves show non-saturated behavior up to an applied maximum magnetic field of $pm$70 kOe. The ac-susceptibility data show a shift in the freezing temperature with excitation frequency and the detailed analysis confirm the slower dynamics and a non-zero value of the Vogel-Fulcher temperature T$_0$, which suggests for the cluster spin glass. The unusual magnetic behavior indicates the presence of complex magnetic interactions at low temperatures. The dc-resistivity measurements show the insulating nature in all the samples. However, relatively large density of states $approx$10$^{22}$ eV$^{-1}$cm$^{-3}$ and low activation energy $approx$130~meV are found in $x=$ 0.05 sample. Using x-ray photoemission spectroscopy, we study the core-level spectra of La 3$d$, Co 2$p$, Sr 3$d$, and Nb 3$d$ to confirm the valence state.
Low frequency noise in current biased La$_{0.82}$Ca$_{0.18}$MnO$_{3}$ single crystals has been investigated in a wide temperature range from 79 K to 290 K. Despite pronounced changes in magnetic properties and dissipation mechanisms of the sample wit h changing temperature, the noise spectra were found to be always of the 1/f type and their intensity (except the lowest temperature studied) scaled as a square of the bias. At liquid nitrogen temperatures and under bias exceeding some threshold value, the behavior of the noise deviates from the quasi-equilibrium modulation noise and starts to depend in a non monotonic way on bias. It has been verified that the observed noise obeys Dutta and Horn model of 1/f noise in solids. The appearance of nonequilibrium 1/f noise and its dependence on bias have been associated with changes in the distribution of activation energies in the underlying energy landscape. These changes have been correlated with bias induced changes in the intrinsic tunneling mechanism dominating dissipation in La$_{0.82}$Ca$_{0.18}$MnO$_{3}$ at low temperatures.
We report measurements and analyses of resistivity, thermopower, and thermal conductivity of polycrystalline samples of perovskite LaRh$_{1-x}$Ni$_x$O$_3$. The thermopower is found to be large at 800 K (185 $mu$V/K for $x=$0.3), which is ascribed to the high-temperature stability of the low-spin state of Rh$^{3+}$/Rh$^{4+}$ ions. This clearly contrasts with the thermopower of the isostructural oxide LaCoO$_3$, which rapidly decreases above 500 K owing to the spin-state transition. The spin state of the transition-metal ions is one of the most important parameters in oxide thermoelectrics.
We present combined experimental and theoretical studies on the magnetic properties of a solid solution between yttrium orthoferrite and yttrium orthochromite systems, YFe$_{1-x}$Cr$_x$O$_3$ (0 $leq$ x $leq$ 1) where Fe$^{3+}$ and Cr$^{3+}$ ions are distributed randomly at the same crystallographic site (4b). We found that all the compositions exhibit weak ferromagnetism below the Neel temperature that decreases non-linearly with increasing $x$, while certain intermediate compositions ($x = 0.4,0.5$) show a compensation point and magnetization reversal. This unusual behavior is explained based on a simple model comprising the isotropic superexchange and the antisymmetric Dzyaloshinskii-Moriya interactions. This model explains the magnetization behavior in the entire range of doping and temperature including the magnetization reversal which results from an interplay of various DM interactions such as, Fe-O-Fe, Cr-O-Cr and Fe-O-Cr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا