ﻻ يوجد ملخص باللغة العربية
We present results from two high-resolution hydrodynamical simulations of proto-cluster regions at z~2.1. The simulations have been compared to observational results for the socalled Spiderweb galaxy system, the core of a putative proto-cluster region at z = 2.16, found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with M200~10^14 h-1 Msun (C1) and a rich cluster with M200~2x10^15 h-1 Msun (C2) at z = 0. The simulated proto-clusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy (BCG) of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared to the observed velocities. We argue that the Spiderweb complex resemble the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing AGN feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.
We present the spectroscopic confirmation of a $z=2.45$ proto-cluster. Its member galaxies lie within a radius of 1.4Mpc (physical) on the sky and within $Delta v pm 700$km/s along the line of sight. We estimate an overdensity of 10, suggesting that
Numerical simulations of cosmological structure formation show that the Universes most massive clusters, and the galaxies living in those clusters, assemble rapidly at early times (2.5 < z < 4). While more than twenty proto-clusters have been observe
A proto-cluster core is the most massive dark matter halo (DMH) in a given proto-cluster. To reveal the galaxy formation in core regions, we search for proto-cluster cores at $zsim 2$ in $sim 1.5, mathrm{deg}^{2}$ of the COSMOS field. Using pairs of
We present SCUBA-2 450$mu$m and 850$mu$m data of the mature redshift 2 cluster CLJ1449. We combine this with archival Herschel data to explore the star forming properties of CLJ1449. Using high resolution ALMA and JVLA data we identify potentially co
Bright Ly-$alpha$ blobs (LABs) --- extended nebulae with sizes of $sim$100kpc and Ly-$alpha$ luminosities of $sim$10$^{44}$erg s$^{-1}$ --- often reside in overdensities of compact Ly-$alpha$ emitters (LAEs) that may be galaxy protoclusters. The numb