ترغب بنشر مسار تعليمي؟ اضغط هنا

Line shape of the muH(3p - 1s) hyperfine transitions

476   0   0.0 ( 0 )
 نشر من قبل Daniel Covita
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The (3p - 1s) X-ray transition to the muonic hydrogen ground state was measured with a high resolution crystal spectrometer. A Doppler effect broadening of the X-ray line was established which could be attributed to different Coulomb de-excitation steps preceding the measured transition. The assumption of a statistical population of the hyperfine levels of the muonic hydrogen ground state was directly confirmed by the experiment and measured values for the hyperfine splitting can be reported. The results allow a decisive test of advanced cascade model calculations and establish a method to extract fundamental strong-interaction parameters from pionic hydrogen experiments.



قيم البحث

اقرأ أيضاً

One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaborations goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.
An efficient $lambda/2$-method ($lambda$ is the resonant wavelength of laser radiation) based on nanometric-thickness cell filled with rubidium is implemented to study the splitting of hyperfine transitions of $^{85}$Rb and $^{87}$Rb $D_2$ lines in a n external magnetic field in the range of $B =3$~kG -- 7~kG. It is experimentally demonstrated that at $B > 3$~kG from 38 (22) Zeeman transitions allowed at low $B$-field in $^{85}$Rb ($^{87}$Rb) spectra in the case of $sigma^+$ polarized laser radiation there remain only 12 (8) which is caused by decoupling of the total electronic momentum $textbf{J}$ and the nuclear spin momentum $textbf{I}$ (hyperfine Paschen-Back regime). Note that at $B > 4.5$~kG in the absorption spectrum these $20$ atomic transitions are regrouped in two completely separate groups of $10$ atomic transitions each. Their frequency positions and fixed (within each group) frequency slopes, as well as the probability characteristics are determined. A unique behavior of the atomic transitions of $^{85}$Rb and $^{87}$Rb labeled $19$ and $20$ (for low magnetic field they could be presented as transitions $F_g=3, m_F=+3 rightarrow F_e=4, m_F=+4$ and $F_g=2, m_F=+2 rightarrow F_e=3, m_F=+3$, correspondingly) is stressed. The experiment agrees well with the theory. Comparison of the behavior of atomic transitions for $D_2$ line compared with that of $D_1$ line is presented. Possible applications are described.
Hyperfine induced $1s2s ^1S_0 to 1s^2 ^1S_0$ M1 transition probabilities of He-like ions have been calculated from relativistic configuration interaction wavefunctions including the frequency independent Breit interaction and QED effects. Present res ults for {$^{151}$}Eu and {$^{155}$}Gd are in good agreement with previous calculations [Phys. Rev. A {bf 63}, 054105 (2001)]. Electronic data are given in terms of a general scaling law in $Z$ that, given isotopic nuclear spin and magnetic moment, allows hyperfine induced decay rates to be estimated for any isotope. The results should be helpful for future experimental investigations on QED and parity non-conservation effects.
The filtered laser excitation technique was applied for measuring transition frequencies of the Ca$_2$ B-X system from asymptotic levels of the X$^1Sigma_{mathrm g}^{+}$ ground state reaching $v=38$. That level has an outer classical turning point of about 20~AA which is only 0.2 rcm below the molecular $^1$S$+^1$S asymptote. Extensive analysis of the spectroscopic data, involving Monte Carlo simulation, allowed for a purely experimental determination of the long range parameters of the potential energy curve. The possible values of the s-wave scattering length could be limited to be between 250$a_0$ and 1000$a_0$.
99 - Runbing Li , Lin Zhou , Jin Wang 2008
We demonstrate a technique for directly measuring the quadratic Zeeman shift using stimulated Raman transitions.The quadratic Zeeman shift has been measured yielding [delta][nju] = 1296.8 +/-3.3 Hz/G^{2} for magnetically insensitive sublevels (5S1/2, F = 2,mF = 0 -> 5S1/2, F = 3,mF = 0) of ^{85}Rb by compensating the magnetic eld and cancelling the ac Stark shift. We also measured the cancellation ratio of the differential ac Stark shift due to the imbalanced Raman beams by using two pairs of Raman beams ([sigma]^{+}, [sigma]^{+}) and it is 1:3.67 when the one-photon detuning is 1.5 GHz in the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا