ﻻ يوجد ملخص باللغة العربية
We study the conditions under which a Kahlerian structure $(G,J)$ of general natural lift type on the cotangent bundle $T^*M$ of a Riemannian manifold $(M,g)$ has constant holomorphic sectional curvature. We obtain that a certain parameter involved in the condition for $(T^*M,G,J)$ to be a Kahlerian manifold, is expressed as a rational function of the other two, their derivatives, the constant sectional curvature of the base manifold $(M,g)$, and the constant holomorphic sectional curvature of the general natural Kahlerian structure $(G,J)$.
We study the conditions under which an almost Hermitian structure $(G,J)$ of general natural lift type on the cotangent bundle $T^*M$ of a Riemannian manifold $(M,g)$ is K ahlerian. First, we obtain the algebraic conditions under which the manifold $
We study the conditions under which the cotangent bundle $T^*M$ of a Riemaannian manifold $(M,g)$, endowed with a Kahlerian structure $(G,J)$ of general natural lift type (see cite{Druta1}), is Einstein. We first obtain a general natural Kahler-Einst
We study some properties of the tangent bundles with metrics of general natural lifted type. We consider a Riemannian manifold $(M,g)$ and we find the conditions under which the Riemannian manifold $(TM,G)$, where $TM$ is the tangent bundle of $M$ an
We show that a closed almost Kahler 4-manifold of globally constant holomorphic sectional curvature $kgeq 0$ with respect to the canonical Hermitian connection is automatically Kahler. The same result holds for $k<0$ if we require in addition that th
We prove that for a bounded domain in $mathbb C^n$ with the Bergman metric of constant holomorphic sectional curvature being biholomorphic to a ball is equivalent to the hyperconvexity or the exhaustiveness of the Bergman-Calabi diastasis. By finding