ﻻ يوجد ملخص باللغة العربية
While hidden class models of various types arise in many statistical applications, it is often difficult to establish the identifiability of their parameters. Focusing on models in which there is some structure of independence of some of the observed variables conditioned on hidden ones, we demonstrate a general approach for establishing identifiability utilizing algebraic arguments. A theorem of J. Kruskal for a simple latent-class model with finite state space lies at the core of our results, though we apply it to a diverse set of models. These include mixtures of both finite and nonparametric product distributions, hidden Markov models and random graph mixture models, and lead to a number of new results and improvements to old ones. In the parametric setting, this approach indicates that for such models, the classical definition of identifiability is typically too strong. Instead generic identifiability holds, which implies that the set of nonidentifiable parameters has measure zero, so that parameter inference is still meaningful. In particular, this sheds light on the properties of finite mixtures of Bernoulli products, which have been used for decades despite being known to have nonidentifiable parameters. In the nonparametric setting, we again obtain identifiability only when certain restrictions are placed on the distributions that are mixed, but we explicitly describe the conditions.
We study parameter identifiability of directed Gaussian graphical models with one latent variable. In the scenario we consider, the latent variable is a confounder that forms a source node of the graph and is a parent to all other nodes, which corres
In the last decade, the secondary use of large data from health systems, such as electronic health records, has demonstrated great promise in advancing biomedical discoveries and improving clinical decision making. However, there is an increasing con
In this contribution we are interested in proving that a given observation-driven model is identifiable. In the case of a GARCH(p, q) model, a simple sufficient condition has been established in [1] for showing the consistency of the quasi-maximum li
We study high-dimensional linear models with error-in-variables. Such models are motivated by various applications in econometrics, finance and genetics. These models are challenging because of the need to account for measurement errors to avoid non-
Latent class models with covariates are widely used for psychological, social, and educational researches. Yet the fundamental identifiability issue of these models has not been fully addressed. Among the previous researches on the identifiability of