ﻻ يوجد ملخص باللغة العربية
We address the problem of unambiguously identifying the state of a probe qudit with the state of one of d reference qudits. The reference states are assumed pure and linearly independent but we have no knowledge of them. The state of the probe qudit is assumed to coincide equally likely with either one of the d unknown reference states. We derive the optimum measurement strategy that maximizes the success probability of unambiguous identification and find that the optimum strategy is a generalized measurement. We give both the measurement operators and the optimum success probability explicitly. Technically, the problem we solve amounts to the optimum unambiguous discrimination of d known mixed quantum states.
We propose a learning method for estimating unknown pure quantum states. The basic idea of our method is to learn a unitary operation $hat{U}$ that transforms a given unknown state $|psi_taurangle$ to a known fiducial state $|frangle$. Then, after co
Quantum systems with a finite number of states at all times have been a primary element of many physical models in nuclear and elementary particle physics, as well as in condensed matter physics. Today, however, due to a practical demand in the area
Coherent states of the quantum electromagnetic field, the quantum description of ideal laser light, are a prime candidate as information carriers for optical communications. A large body of literature exists on quantum-limited parameter estimation an
We investigate chains of d dimensional quantum spins (qudits) on a line with generic nearest neighbor interactions without translational invariance. We find the conditions under which these systems are not frustrated, i.e. when the ground states are
We propose an oversimplified scheme to unambiguously discriminate nonorthogonal quantum field states inside high-Q cavities. Our scheme, which is based on positive operator-valued mea- sures (POVM) technique, uses a single three-level atom interactin