ﻻ يوجد ملخص باللغة العربية
We prove scattering for the radial nonlinear Klein-Gordon equation $ partial_{tt} u - Delta u + u = -|u|^{p-1} u $ with $5 > p >3$ and data $ (u_{0}, u_{1}) in H^{s} times H^{s-1} $, $ 1 > s > 1- frac{(5-p)(p-3)}{2(p-1)(p-2)} $ if $ 4 geq p > 3 $ and $ 1 > s > 1 - frac{(5-p)^{2}}{2(p-1)(6-p)}$ if $ 5> p geq 4$. First we prove Strichartz-type estimates in $ L_{t}^{q} L_{x}^{r} $ spaces. Then by using these decays we establish some local bounds. By combining these results with a Morawetz-type estimate and a radial Sobolev inequality we control the variation of an almost conserved quantity on arbitrarily large intervals. Once we have showed that this quantity is controlled, we prove that some of these local bounds can be upgraded to global bounds. This is enough to establish scattering. All the estimates involved require a delicate analysis due to the nature of the nonlinearity and the lack of scaling.
In this paper, well prove a L^2-concentration result of Zakharov system in space dimension two, with radial initial data (u_0,n_0,n_1)in H^stimes L^2times H^{-1} ({16/17}<s<1), when blow up of the solution happens by I-method. In additional to that w
We consider the global dynamics below the ground state energy for the Zakharov system in the 3D radial case. We obtain dichotomy between the scattering and the growup.
We prove that the energy equality holds for weak solutions of the 3D Navier-Stokes equations in the functional class $L^3([0,T);V^{5/6})$, where $V^{5/6}$ is the domain of the fractional power of the Stokes operator $A^{5/12}$.
We prove asymptotic completeness in the energy space for the nonlinear Schrodinger equation posed on hyperbolic space in the radial case, in space dimension at least 4, and for any energy-subcritical, defocusing, power nonlinearity. The proof is base
We revisit the problem of scattering below the ground state threshold for the mass-supercritical focusing nonlinear Schrodinger equation in two space dimensions. We present a simple new proof that treats the case of radial initial data. The key ingre