ترغب بنشر مسار تعليمي؟ اضغط هنا

On the K-theory of truncated polynomial algebras over the integers

190   0   0.0 ( 0 )
 نشر من قبل Lars Hesselholt
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the K_{2i}(Z[x]/(x^m),(x)) is finite of order (mi)!(i!)^{m-2} and that K_{2i+1}(Z[x]/(x^m),(x)) is free abelian of rank m-1. This is accomplished by showing that the equivariant homotopy groups of the topological Hochschild spectrum THH(Z) are finite, in odd degrees, and free abelian, in even degrees, and by evaluating their orders and ranks, respectively.



قيم البحث

اقرأ أيضاً

We consider the algebraic K-theory of a truncated polynomial algebra in several commuting variables, K(k[x_1, ..., x_n]/(x_1^a_1, ..., x_n^a_n)). This naturally leads to a new generalization of the big Witt vectors. If k is a perfect field of positiv e characteristic we describe the K-theory computation in terms of a cube of these Witt vectors on N^n. If the characteristic of k does not divide any of the a_i we compute the K-groups explicitly. We also compute the K-groups modulo torsion for k=Z. To understand this K-theory spectrum we use the cyclotomic trace map to topological cyclic homology, and write TC(k[x_1, ..., x_n]/(x_1^a_1, ..., x_n^a_n)) as the iterated homotopy cofiber of an n-cube of spectra, each of which is easier to understand. Updated: This is a substantial revision. We corrected several errors in the description of the Witt vectors on a truncation set on N^n and modified the key proofs accordingly. We also replaces several topological statement with purely algebraic ones. Most arguments have been reworked and streamlined.
We show that K_{2i}(Z[x,y]/(xy),(x,y)) is free abelian of rank 1 and that K_{2i+1}(Z[x,y]/(xy),(x,y)) is finite of order (i!)^2. We also compute K_{2i+1}(Z[x,y]/(xy),(x,y)) in low degrees.
73 - Chris Bruce 2019
Let $K$ be a number field with ring of integers $R$. Given a modulus $mathfrak{m}$ for $K$ and a group $Gamma$ of residues modulo $mathfrak{m}$, we consider the semi-direct product $Rrtimes R_{mathfrak{m},Gamma}$ obtained by restricting the multiplic ative part of the full $ax+b$-semigroup over $R$ to those algebraic integers whose residue modulo $mathfrak{m}$ lies in $Gamma$, and we study the left regular C*-algebra of this semigroup. We give two presentations of this C*-algebra and realize it as a full corner in a crossed product C*-algebra. We also establish a faithfulness criterion for representations in terms of projections associated with ideal classes in a quotient of the ray class group modulo $mathfrak{m}$, and we explicitly describe the primitive ideals using relations only involving the range projections of the generating isometries; this leads to an explicit description of the boundary quotient. Our results generalize and strengthen those of Cuntz, Deninger, and Laca and of Echterhoff and Laca for the C*-algebra of the full $ax+b$-semigroup. We conclude by showing that our construction is functorial in the appropriate sense; in particular, we prove that the left regular C*-algebra of $Rrtimes R_{mathfrak{m},Gamma}$ embeds canonically into the left regular C*-algebra of the full $ax+b$-semigroup. Our methods rely heavily on Lis theory of semigroup C*-algebras.
330 - Travis Schedler 2016
We determine the Z-module structure of the preprojective algebra and its zeroth Hochschild homology, for any non-Dynkin quiver (and hence the structure working over any base commutative ring, of any characteristic). This answers (and generalizes) a c onjecture of Hesselholt and Rains, producing new $p$-torsion classes in degrees 2p^l, l >= 1, We relate these classes by p-th power maps and interpret them in terms of the kernel of Verschiebung maps from noncommutative Witt theory. An important tool is a generalization of the Diamond Lemma to modules over commutative rings, which we give in the appendix. In the previous version, additional results are included, such as: the Poisson center of $text{Sym } HH_0(Pi)$ for all quivers, the BV algebra structure on Hochschild cohomology, including how the Lie algebra structure $HH_0(Pi_Q)$ naturally arises from it, and the cyclic homology groups of $Pi_Q$.
We present a quick approach to computing the $K$-theory of the category of locally compact modules over any order in a semisimple $mathbb{Q}$-algebra. We obtain the $K$-theory by first quotienting out the compact modules and subsequently the vector m odules. Our proof exploits the fact that the pair (vector modules plus compact modules, discrete modules) becomes a torsion theory after we quotient out the finite modules. Treating these quotients as exact categories is possible due to a recent localization formalism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا