ترغب بنشر مسار تعليمي؟ اضغط هنا

New supersymmetric quartet of nuclei: 192Os, 193Os, 193Ir, 194Ir

87   0   0.0 ( 0 )
 نشر من قبل Roelof Bijker
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present evidence of the existence of a new supersymmetric quartet of nuclei in the A=190 mass region. The analysis is based on new experimental information on the odd-odd nucleus 194Ir from transfer and capture reactions. The new data allow the identification of a new supersymmetric quartet, consisting of the 192,193Os and 193,194Ir nuclei. We make explicit predictions fo r193Os, and suggest that its spectroscopic properties be measured in dedicated experiments. Finally, we study correlations between different transfer reactions.



قيم البحث

اقرأ أيضاً

160 - J. Barea , R. Bijker , A. Frank 2009
We present evidence for a new supersymmetric quartet in the A=190 region of the nuclear mass table. New experimental information on transfer and neutron capture reactions to the odd-odd nucleaus 194 Ir strongly suggests the existence of a new supersy mmetric quartet, consisting of the 192,193 Os and 193,194 Ir nuclei. We make explicit predictions for the odd-neutron nucleus 193 Os, and suggest that its spectroscopic properties be measured in dedicated experiments.
118 - B.H. Sun , Y. Lu , J.P. Peng 2014
We show that the charge radii of neighboring atomic nuclei, independent of atomic number and charge, follow remarkably very simple relations, despite the fact that atomic nuclei are complex finite many-body systems governed by the laws of quantum mec hanics. These relations can be understood within the picture of independent-particle motion and by assuming neighboring nuclei having similar pattern in the charge density distribution. A root-mean-square (rms) deviation of 0.0078 fm is obtained between the predictions in these relations and the experimental values, i.e., a comparable precision as modern experimental techniques. Such high accuracy relations are very useful to check the consistence of nuclear charge radius surface and moreover to predict unknown nuclear charge radii, while large deviations from experimental data is seen to reveal the appearance of nuclear shape transition or coexsitence.
97 - J. Cseh , G. Riczu 2015
The relation of quarteting and clustering in atomic nuclei is discussed based on symmetry-considerations. This connection enables us to predict a complete high-energy cluster spectrum from the description of the low-energy quartet part. As an example the $^{28}$Si nucleus is considered, including its well-established ground-state region, the recently proposed superdeformed band, and the high-lying molecular resonances.
Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding the role of the QCD in generating nuclear forces at short distances as well as understa nding the dynamics of the super-dense cold nuclear matter relevant to the interior of neutron stars. With an emergence of high energy electron and proton beams there is a significant recent progress in high energy nuclear scattering experiments aimed at studies of short-range structure of nuclei. This in turn stimulated new theoretical studies resulting in the observation of several new phenomena specific to the short range structure of nuclei. In this work we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and their importance for advancing our understanding of the dynamics of nuclear interactions at small distances.
Recently a new observable to study halo nuclei was introduced, based on the ratio between breakup and elastic angular cross sections. This new observable is shown by the analysis of specific reactions to be independent of the reaction mechanism and t o provide nuclear-structure information of the projectile. Here we explore the details of this ratio method, including the sensitivity to binding energy and angular momentum of the projectile. We also study the reliability of the method with breakup energy. Finally, we provide guidelines and specific examples for experimentalists who wish to apply this method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا