ﻻ يوجد ملخص باللغة العربية
CoFe/FeMn, FeMn/CoFe bilayers and CoFe/FeMn/CoFe trilayers were grown in magnetic field and at room temperature. The exchange bias field $H_{eb}$ depends strongly on the order of depositions and is much higher at CoFe/FeMn than at FeMn/CoFe interfaces. By combining the two bilayer structures into symmetric CoFe/FeMn($t_mathrm{FeMn}$)/CoFe trilayers, $H_{eb}^t$ and $H_{eb}^b$ of the top and bottom CoFe layers, respectively, are both enhanced. Reducing $t_mathrm{FeMn}$ of the trilayers also results in enhancements of both $H_{eb}^b$ and $H_{eb}^t$. These results evidence the propagation of exchange bias between the two CoFe/FeMn and FeMn/CoFe interfaces mediated by the FeMn antiferromagnetic order.
Antiferromagnetic spintronic devices have the potential to outperform conventional ferromagnetic devices due to their ultrafast dynamics and high data density. A challenge in designing these devices is the control and detection of the orientation of
Using an atomistic spin model, we have simulated spin wave injection and propagation into antiferromagnetic IrMn from an exchange coupled CoFe layer. The spectral characteristics of the exited spin waves have a complex beating behavior arising from t
Naturally occurring spin-valve-type magnetoresistance (SVMR), recently observed in Sr2FeMoO6 samples, suggests the possibility of decoupling the maximal resistance from the coercivity of the sample. Here we present the evidence that SVMR can be engin
Tailoring Gilbert damping of metallic ferromagnetic thin films is one of the central interests in spintronics applications. Here we report a giant Gilbert damping anisotropy in epitaxial Co$_{50}$Fe$_{50}$ thin film with a maximum-minimum damping rat
Multiferroic BaMnF$_4$ powder were prepared by hydrothermal method. Hysteretic field dependent magnetization curve at 5 K confirms the weak ferromagnetism aroused from the canted antiferromagnetic spins by magnetoelectric coupling. The blocking tempe