ترغب بنشر مسار تعليمي؟ اضغط هنا

High speed quantum gates with cavity quantum electrodynamics

186   0   0.0 ( 0 )
 نشر من قبل Chun-Hsu Su
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cavity quantum electrodynamic schemes for quantum gates are amongst the earliest quantum computing proposals. Despite continued progress, and the dramatic recent demonstration of photon blockade, there are still issues with optimal coupling and gate operation involving high-quality cavities. Here we show dynamic control techniques that allow scalable cavity-QED based quantum gates, that use the full bandwidth of the cavities. When applied to quantum gates, these techniques allow an order of magnitude increase in operating speed, and two orders of magnitude reduction in cavity Q, over passive cavity-QED architectures. Our methods exploit Stark shift based Q-switching, and are ideally suited to solid-state integrated optical approaches to quantum computing.



قيم البحث

اقرأ أيضاً

We present a general framework for cavity quantum electrodynamics with strongly frequency-dependent mirrors. The method is applicable to a variety of reflectors exhibiting sharp internal resonances as can be realized, for example, with photonic-cryst al mirrors or with two-dimensional atomic arrays around subradiant points. Our approach is based on a modification of the standard input--output formalism to explicitly include the dynamics of the mirrors internal resonance. We show how to directly extract the interaction tuning parameters from the comparison with classical transfer matrix theory and how to treat the non-Markovian dynamics of the cavity field mode introduced by the mirrors internal resonance. As an application within optomechanics, we illustrate how a non-Markovian Fano cavity possessing a flexible photonic crystal mirror can provide both sideband resolution as well as strong heating suppression in optomechanical cooling. This approach, amenable to a wide range of systems, opens up possibilities for using hybrid frequency-dependent reflectors in cavity quantum electrodynamics for engineering novel forms of light-matter interactions.
Cavity quantum electrodynamics (CQED) investigates the interaction between light confined in a resonator and particles, such as atoms. In recent years, CQED experiments have reached the optical domain resulting in many interesting applications in the realm of quantum information processing. For many of these application it is necessary to overcome limitations imposed by photon loss. In this context whispering-gallery mode (WGM) resonators have obtained significant interest. Besides their small mode volume and their ultra high quality, they also exhibit favorable polarization properties that give rise to chiral light--matter interaction. In this chapter, we will discuss the origin and the consequences of these chiral features and we review recent achievements in this area.
We study the transmission spectra of ultracold rubidium atoms coupled to a high-finesse optical cavity. Under weak probing with pi-polarized light, the linear response of the system is that of a collective spin with multiple levels coupled to a singl e mode of the cavity. By varying the atom number, we change the collective coupling of the system. We observe the change in transmission spectra when going from a regime where the collective coupling is much smaller than the separation of the atomic levels to a regime where both are of comparable size. The observations are in good agreement with a reduced model we developed for our system.
We consider the implementation of two-qubit gates when the physical systems used to realize the qubits are weakly anharmonic and therefore possess additional quantum states in the accessible energy range. We analyze the effect of the additional quant um states on the maximum achievable speed for quantum gates in the qubit state space. By calculating the minimum gate time using optimal control theory, we find that higher energy levels can help make two-qubit gates significantly faster than the reference value based on simple qubits. This speedup is a result of the higher coupling strength between higher energy levels. We then analyze the situation where the pulse optimization algorithm avoids pulses that excite the higher levels. We find that in this case the presence of the additional states can lead to a significant reduction in the maximum achievable gate speed. We also compare the optimal control gate times with those obtained using the cross-resonance/selective-darkening gate protocol. We find that the latter, with some parameter optimization, can be used to achieve a relatively fast implementation of the CNOT gate. These results can help the search for optimized gate implementations in realistic quantum computing architectures, such as those based on superconducting qubits. They also provide guidelines for desirable conditions on anharmonicity that would allow optimal utilization of the higher levels to achieve fast quantum gates.
We present coherent reflection spectroscopy on a charge and DC Stark tunable quantum dot embedded in a high-quality and externally mode-matched microcavity. The addition of an exciton to a single-electron charged quantum dot forms a trion that intera cts with the microcavity just below strong coupling regime of cavity quantum electrodynamics. Such an integrated, monolithic system is a crucial step towards the implementation of scalable hybrid quantum information schemes that are based on an efficient interaction between a single photon and a confined electron spin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا