ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots

354   0   0.0 ( 0 )
 نشر من قبل Kasper Grove-Rasmussen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study low-temperature transport through carbon nanotube quantum dots in the Coulomb blockade regime coupled to niobium-based superconducting leads. We observe pronounced conductance peaks at finite source-drain bias, which we ascribe to elastic and inelastic cotunneling processes enhanced by the coherence peaks in the density of states of the superconducting leads. The inelastic cotunneling lines display a marked dependence on the applied gate voltage which we relate to different tunneling-renormalizations of the two subbands in the nanotube. Finally, we discuss the origin of an especially pronounced sub-gap structure observed in every fourth Coulomb diamond.



قيم البحث

اقرأ أيضاً

We investigate charge pumping in carbon nanotube quantum dots driven by the electric field of a surface acoustic wave. We find that at small driving amplitudes, the pumped current reverses polarity as the conductance is tuned through a Coulomb blocka de peak using a gate electrode. We study the behavior as a function of wave amplitude, frequency and direction and develop a model in which our results can be understood as resulting from adiabatic charge redistribution between the leads and quantum dots on the nanotube.
104 - G. Gotz , G.A. Steele , W. Vos 2008
We investigate a Quantum Dot (QD) in a Carbon Nanotube (CNT) in the regime where the QD is nearly isolated from the leads. An aluminum single electron transistor (SET) serves as a charge detector for the QD. We precisely measure and tune the tunnel r ates into the QD in the range between 1 kHz and 1 Hz, using both pulse spectroscopy and real - time charge detection and measure the excitation spectrum of the isolated QD.
We report Pauli spin blockade in an impurity defined carbon nanotube double quantum dot. We observe a pronounced current suppression for negative source-drain bias voltages which is investigated for both symmetric and asymmetric coupling of the quant um dots to the leads. The measured differential conductance agrees well with a theoretical model of a double quantum dot system in the spin-blockade regime which allows us to estimate the occupation probabilities of the relevant singlet and triplet states. This work shows that effective spin-to-charge conversion in nanotube quantum dots is feasible and opens the possibility of single-spin readout in a material that is not limited by hyperfine interaction with nuclear spins.
Understanding the influence of vibrational motion of the atoms on electronic transitions in molecules constitutes a cornerstone of quantum physics, as epitomized by the Franck-Condon principle of spectroscopy. Recent advances in building molecular-el ectronics devices and nanoelectromechanical systems open a new arena for studying the interaction between mechanical and electronic degrees of freedom in transport at the single-molecule level. The tunneling of electrons through molecules or suspended quantum dots has been shown to excite vibrational modes, or vibrons. Beyond this effect, theory predicts that strong electron-vibron coupling dramatically suppresses the current flow at low biases, a collective behaviour known as Franck-Condon blockade. Here we show measurements on quantum dots formed in suspended single-wall carbon nanotubes revealing a remarkably large electron-vibron coupling and, due to the high quality and unprecedented tunability of our samples, admit a quantitative analysis of vibron-mediated electronic transport in the regime of strong electron-vibron coupling. This allows us to unambiguously demonstrate the Franck-Condon blockade in a suspended nanostructure. The large observed electron-vibron coupling could ultimately be a key ingredient for the detection of quantized mechanical motion. It also emphasizes the unique potential for nanoelectromechanical device applications based on suspended graphene sheets and carbon nanotubes.
We report the fabrication details and low-temperature characteristics of the first carbon nanotube (CNT) quantum dots on flakes of hexagonal boron nitride (hBN) as substrate. We demonstrate that CNTs can be grown on hBN by standard chemical vapor dep osition and that standard scanning electron microscopy imaging and lithography can be employed to fabricate nanoelectronic structures when using optimized parameters. This proof of concept paves the way to more complex devices on hBN, with more predictable and reproducible characteristics and electronic stability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا