ﻻ يوجد ملخص باللغة العربية
We present an analysis of the optical night sky brightness and extinction coefficient measurements in UBVRI at the Indian Astronomical Observatory (IAO), Hanle, during the period 2003-2008. They are obtained from an analysis of CCD images acquired at the 2 m Himalayan Chandra Telescope at IAO. Night sky brightness was estimated using 210 HFOSC images obtained on 47 nights and covering the declining phase of solar activity cycle-23. The zenith corrected values of the moonless night sky brightness in mag/square arcsecs are 22.14(U), 22.42(B), 21.28(V), 20.54(R) and 18.86(I) band. This shows that IAO is a dark site for optical observations. No clear dependency of sky brightness with solar activity is found. Extinction values at IAO are derived from an analysis of 1325 images over 58 nights. They are found to be 0.36 in U-band, 0.21 in B-band, 0.12 in V-band, 0.09 in R-band and 0.05 in I-band. On average, extinction during the summer months is slightly larger than that during the winter months. No clear evidence for a correlation between extinction in all bands and the average night time wind speed is found. Also presented here is the low resolution moonless optical night sky spectrum for IAO covering the wavelength range 3000-9300 AA. Hanle region thus has the required characteristics of a good astronomical site in terms of night sky brightness and extinction, and could be a natural candidate site for any future large aperture Indian optical-infrared telescope(s).
We present optical UBVRI zenith night sky brightness measurements collected on eighteen nights during 2013--2016 and SQM measurements obtained daily over twenty months during 2014--2016 at the Observatorio Astronomico Nacional on the Sierra San Pedro
In 2018, Solar Cycle 24 entered into a solar minimum phase. During this period, 11 million zenithal night sky brightness (NSB) data were collected at different dark sites around the planet, including astronomical observatories and natural protected a
The analysis of the night cloud cover is very important for astronomical observation in real time, considering a typical observation time of about 15 minutes, and to have a statistics of the night cloud cover. In this paper we use the SQM (Sky Qualit
Sky conditions in the remote, dry north-western interior of South Africa are now the subject of considerable interest in view of the imminent construction of numerous solar power plants in this area. Furthermore, the part of this region in which the
The photometric sky quality of Mt. Shatdzhatmaz, the site of Sternberg Astronomical Institute Caucasian Observatory 2.5 m telescope, is characterized here by the statistics of the night-time sky brightness and extinction. The data were obtained as a