ﻻ يوجد ملخص باللغة العربية
We discuss the nuclear magnetic relaxation rate and the superfluid density with the use of the effective five-band model by Kuroki et al. [Phys. Rev. Lett. 101, 087004 (2008)] in Fe-based superconductors. We show that a fully-gapped anisotropic pm s-wave superconductivity consistently explains experimental observations. In our phenomenological model, the gaps are assumed to be anisotropic on the electron-like beta Fermi surfaces around the M point, where the maximum of the anisotropic gap is about four times larger than the minimum.
Nuclear magnetic relaxation rate 1/T_1 in iron-pnictide superconductors is calculated using the gap function obtained in a microscopic calculation. Based on the obtained results, we discuss the issues such as the rapid decrease of 1/T_1 just below th
In- and out-of-plane magnetic penetration depths were measured in three iron-based pnictide superconducting systems. All studied samples of both 122 systems show a robust power-law behavior, $lambda (T) T^n$, with the sample-dependent exponent n=2-2.
Although the pairing mechanism of the Fe-based superconductors (FeSCs) has not yet been settled with a consensus, as to the pairing symmetry and the superconducting (SC) gap function, the abundant majority of experiments are supporting for the spin-s
In order to consistently explain controversial experimental results on superconducting states observed by different probes in typical iron-based superconductors, we construct a realistic multi-band $pm s$-wave pairing model by combining the quasiclas
We investigate the origin of exoticity in Fe-based systems via studying the Fermiology of CaFe2As2 employing Angle Resolved Photoemission spectroscopy (ARPES). While the Fermi surfaces (FSs) at 200 K and 31 K are observed to exhibit two dimensional (