ﻻ يوجد ملخص باللغة العربية
Weakly non-linear stability of regimes of free hydromagnetic thermal convection in a rotating horizontal layer with free electrically conducting boundaries is considered in the Boussinesq approximation. Perturbations are supposed to involve large spatial and temporal scales. Applying methods for homogenisation of parabolic equations, we derive the system of amplitude equations governing the evolution of perturbations under the assumption that the alpha-effect is insignificant in the leading order. The amplitude equations involve the operators of anisotropic combined eddy diffusivity correction and advection. The system is qualitatively different from the system of mean-field equations for large-scale perturbations of forced convective hydromagnetic regimes. It is mixed: equations for the mean magnetic perturbation are evolutionary, all the rest involve neither time derivatives, nor the molecular diffusivity operator.
I consider the problem of weakly nonlinear stability of three-dimensional convective magnetohydrodynamic systems, where there is no alpha-effect or it is insignificant, to perturbations involving large scales. I assume that the convective MHD state (
We study generation of magnetic fields, involving large spatial scales, by convective plan-forms in a horizontal layer. Magnetic modes and their growth rates are expanded in power series in the scale ratio, and the magnetic eddy diffusivity (MED) ten
I consider the problem of weakly nonlinear stability of three-dimensional parity-invariant magnetohydrodynamic systems to perturbations, involving large scales. I assume that the MHD state, the stability of which I investigate, does not involve large
Experimental and numerical study of the steady-state cyclonic vortex from isolated heat source in a rotating fluid layer is described. The structure of laboratory cyclonic vortex is similar to the typical structure of tropical cyclones from observati
We prove the existence of infinitely many non square-integrable stationary solutions for a family of massless Dirac equations in 2D. They appear as effective equations in two dimensional honeycomb structures. We give a direct existence proof thanks t