ﻻ يوجد ملخص باللغة العربية
The influence of time delay in systems of two coupled excitable neurons is studied in the framework of the FitzHugh-Nagumo model. Time-delay can occur in the coupling between neurons or in a self-feedback loop. The stochastic synchronization of instantaneously coupled neurons under the influence of white noise can be deliberately controlled by local time-delayed feedback. By appropriate choice of the delay time synchronization can be either enhanced or suppressed. In delay-coupled neurons, antiphase oscillations can be induced for sufficiently large delay and coupling strength. The additional application of time-delayed self-feedback leads to complex scenarios of synchronized in-phase or antiphase oscillations, bursting patterns, or amplitude death.
Control of the motion of cavity solitons is one the central problems in nonlinear optical pattern formation. We report on the impact of the phase of the time-delayed optical feedback and carrier lifetime on the self-mobility of localized structures o
We investigate a regenerative memory based upon a time-delayed neuromorphic photonic oscillator and discuss the link with temporal localized structures. Our experimental implementation is based upon a optoelectronic system composed of a nanoscale non
The Brusselator reaction-diffusion model is a paradigm for the understanding of dissipative structures in systems out of equilibrium. In the first part of this paper, we investigate the formation of stationary localized structures in the Brusselator
The visibility of the two-photon interference in the Franson interferometer serves as a measure of the energy-time entanglement of the photons. We propose to control the visibility of the interference in the second-order coherence function by impleme
Time-delayed feedback methods can be used to control unstable periodic orbits as well as unstable steady states. We present an application of extended time delay autosynchronization introduced by Socolar et al. to an unstable focus. This system repre