ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Combinatorial Optimization under Probabilistic Constraints

161   0   0.0 ( 0 )
 نشر من قبل Shipra Agrawal
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present approximation algorithms for combinatorial optimization problems under probabilistic constraints. Specifically, we focus on stochastic variants of two important combinatorial optimization problems: the k-center problem and the set cover problem, with uncertainty characterized by a probability distribution over set of points or elements to be covered. We consider these problems under adaptive and non-adaptive settings, and present efficient approximation algorithms for the case when underlying distribution is a product distribution. In contrast to the expected cost model prevalent in stochastic optimization literature, our problem definitions support restrictions on the probability distributions of the total costs, via incorporating constraints that bound the probability with which the incurred costs may exceed a given threshold.



قيم البحث

اقرأ أيضاً

In several applications such as databases, planning, and sensor networks, parameters such as selectivity, load, or sensed values are known only with some associated uncertainty. The performance of such a system (as captured by some objective function over the parameters) is significantly improved if some of these parameters can be probed or observed. In a resource constrained situation, deciding which parameters to observe in order to optimize system performance itself becomes an interesting and important optimization problem. This general problem is the focus of this paper. One of the most important considerations in this framework is whether adaptivity is required for the observations. Adaptive observations introduce blocking or sequential operations in the system whereas non-adaptive observations can be performed in parallel. One of the important questions in this regard is to characterize the benefit of adaptivity for probes and observation. We present general techniques for designing constant factor approximations to the optimal observation schemes for several widely used scheduling and metric objective functions. We show a unifying technique that relates this optimization problem to the outlier version of the corresponding deterministic optimization. By making this connection, our technique shows constant factor upper bounds for the benefit of adaptivity of the observation schemes. We show that while probing yields significant improvement in the objective function, being adaptive about the probing is not beneficial beyond constant factors.
We consider a robust model proposed by Scarf, 1958, for stochastic optimization when only the marginal probabilities of (binary) random variables are given, and the correlation between the random variables is unknown. In the robust model, the objecti ve is to minimize expected cost against worst possible joint distribution with those marginals. We introduce the concept of correlation gap to compare this model to the stochastic optimization model that ignores correlations and minimizes expected cost under independent Bernoulli distribution. We identify a class of functions, using concepts of summable cost sharing schemes from game theory, for which the correlation gap is well-bounded and the robust model can be approximated closely by the independent distribution model. As a result, we derive efficient approximation factors for many popular cost functions, like submodular functions, facility location, and Steiner tree. As a byproduct, our analysis also yields some new results in the areas of social welfare maximization and existence of Walrasian equilibria, which may be of independent interest.
145 - Jose F. Fontanari 2010
We investigate the performance of a variant of Axelrods model for dissemination of culture - the Adaptive Culture Heuristic (ACH) - on solving an NP-Complete optimization problem, namely, the classification of binary input patterns of size $F$ by a B oolean Binary Perceptron. In this heuristic, $N$ agents, characterized by binary strings of length $F$ which represent possible solutions to the optimization problem, are fixed at the sites of a square lattice and interact with their nearest neighbors only. The interactions are such that the agents strings (or cultures) become more similar to the low-cost strings of their neighbors resulting in the dissemination of these strings across the lattice. Eventually the dynamics freezes into a homogeneous absorbing configuration in which all agents exhibit identical solutions to the optimization problem. We find through extensive simulations that the probability of finding the optimal solution is a function of the reduced variable $F/N^{1/4}$ so that the number of agents must increase with the fourth power of the problem size, $N propto F^ 4$, to guarantee a fixed probability of success. In this case, we find that the relaxation time to reach an absorbing configuration scales with $F^ 6$ which can be interpreted as the overall computational cost of the ACH to find an optimal set of weights for a Boolean Binary Perceptron, given a fixed probability of success.
81 - Steven Chaplick 2020
We study problems with stochastic uncertainty information on intervals for which the precise value can be queried by paying a cost. The goal is to devise an adaptive decision tree to find a correct solution to the problem in consideration while minim izing the expected total query cost. We show that, for the sorting problem, such a decision tree can be found in polynomial time. For the problem of finding the data item with minimum value, we have some evidence for hardness. This contradicts intuition, since the minimum problem is easier both in the online setting with adversarial inputs and in the offline verification setting. However, the stochastic assumption can be leveraged to beat both deterministic and randomized approximation lower bounds for the online setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا