ﻻ يوجد ملخص باللغة العربية
The techniques of laser cooling combined with atom interferometry make possible the realization of very sensitive and accurate inertial sensors like gyroscopes or accelerometers. Besides earth-based developments, the use of these techniques in space should provide extremely high sensitivity for research in fundamental physics, Earths observation and exploration of the solar system.
Long-term inertial navigation is currently limited by the bias drifts of gyroscopes and accelerometers and ultra-stable cold-atom interferometers offer a promising alternative for the next generation of high-end navigation systems. Here, we present a
We show how to construct asymmetric optical barriers for atoms. These barriers can be used to compress phase space of a sample by creating a confined region in space where atoms can accumulate with heating at the single photon recoil level. We illust
The derivation of approximate wave functions for an electron submitted to both a coulomb and a time-dependent laser electric fields, the so-called Coulomb-Volkov (CV) state, is addressed. Despite its derivation for continuum states does not exhibit a
We are able to clearly distinguish the processes responsible for enhanced low-intensity atomic Kerr nonlinearity, namely coherent population trapping and coherent population oscillations in experiments performed on the Rb D1 line, where one or the ot
We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral