ترغب بنشر مسار تعليمي؟ اضغط هنا

K to pi and K to 0 in 2+1 Flavor Partially Quenched Chiral Perturbation Theory

475   0   0.0 ( 0 )
 نشر من قبل Christopher Aubin
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate results for K to pi and K to 0 matrix elements to next-to-leading order in 2+1 flavor partially quenched chiral perturbation theory. Results are presented for both the Delta I=1/2 and 3/2 channels, for chiral operators corresponding to current-current, gluonic penguin, and electroweak penguin 4-quark operators. These formulas are useful for studying the chiral behavior of currently available 2+1 flavor lattice QCD results, from which the low energy constants of the chiral effective theory can be determined. The low energy constants of these matrix elements are necessary for an understanding of the Delta I=1/2 rule, and for calculations of epsilon/epsilon using current lattice QCD simulations.



قيم البحث

اقرأ أيضاً

In this project, we will compute the form factors relevant for $B to K^*(to K pi)ell^+ell^-$ decays. To map the finite-volume matrix elements computed on the lattice to the infinite-volume $B to K pi$ matrix elements, the $K pi$ scattering amplitude needs to be determined using Luschers method. Here we present preliminary results from our calculations with $2+1$ flavors of dynamical clover fermions. We extract the $P$-wave scattering phase shifts and determine the $K^*$ resonance mass and the $K^* K pi$ coupling for two different ensembles with pion masses of $317(2)$ and $178(2)$ MeV.
We have performed fits of the pseudoscalar masses and decay constants, from a variety of RBC-UKQCD domain wall fermion ensembles, to $SU(2)$ partially quenched chiral perturbation theory at next-to leading order (NLO) and next-to-next-to leading orde r (NNLO). We report values for 9 NLO and 8 linearly independent combinations of NNLO partially quenched low energy constants, which we compare to other lattice and phenomenological determinations. We discuss the size of successive terms in the chiral expansion and use our large set of low energy constants to make predictions for mass splittings due to QCD isospin breaking effects and the S-wave $pi pi$ scattering lengths. We conclude that, for the range of pseudoscalar masses explored in this work, $115~mathrm{MeV} lesssim m_{rm PS} lesssim 430~mathrm{MeV}$, the NNLO $SU(2)$ expansion is quite robust and can fit lattice data with percent-scale accuracy.
We measure the pion mass and decay constant on ensembles generated by the Wuppertal-Budapest Collaboration, and extract the NLO low-energy constants l_3 and l_4 of SU(2) chiral perturbation theory. The data are generated in 2+1 flavor simulations wit h Symanzik glue and 2-fold stout-smeared staggered fermions, with pion masses varying from 135 MeV to 400 MeV, lattice scales between 0.7 GeV and 2.0 GeV, and m_s kept at its physical value. Furthermore, by excluding the lightest mass points, we are able to test the reliability of SU(2) chPT as a tool to extrapolate towards the physical point from higher pion masses.
94 - Ronald Babich 2006
We present results for the Delta S=2 matrix elements which are required to study neutral kaon mixing in the standard model (SM) and beyond (BSM). We also provide leading chiral order results for the matrix elements of the electroweak penguin operator s which give the dominant Delta I=3/2 contribution to direct CP violation in K->pipi decays. Our calculations were performed with Neuberger fermions on two sets of quenched Wilson gauge configurations at inverse lattice spacings of approximately 2.2 GeV and 1.5 GeV. All renormalizations were implemented non-perturbatively in the RI/MOM scheme, where we accounted for sub-leading operator product expansion corrections and discretization errors. We find ratios of non-SM to SM matrix elements which are roughly twice as large as in the only other dedicated lattice study of these amplitudes. On the other hand, our results for the electroweak penguin matrix elements are in good agreement with two recent domain-wall fermion calculations. As a by-product of our study, we determine the strange quark mass. Our main results are summarized and discussed in Sec. VII. Within our statistics, we find no evidence for scaling violations.
62 - S. Aoki , O. Baer , S. Takeda 2006
We calculate the vector meson masses in $N_{rm f} = 2+1$ Wilson chiral perturbation theory at next-to-leading order. Generalizing the framework of heavy vector meson chiral perturbation theory, the quark mass and the lattice cutoff dependence of the vector meson masses is derived. Our chiral order counting assumes that the lattice cut-off artifacts are of the order of the typical pion momenta, $p sim aLambda_{rm QCD}^{2}$. This counting scheme is consistent with the one in the pseudo scalar meson sector where the O($a^2$) terms are included in the leading order chiral Lagrangian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا