ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperbolic conservation laws on manifolds with limited regularity

138   0   0.0 ( 0 )
 نشر من قبل Philippe G. LeFloch
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a formulation of the initial and boundary value problem for nonlinear hyperbolic conservation laws posed on a differential manifold endowed with a volume form, possibly with a boundary; in particular, this includes the important case of Lorentzian manifolds. Only limited regularity is assumed on the geometry of the manifold. For this problem, we establish the existence and uniqueness of an L1 semi-group of weak solutions satisfying suitable entropy and boundary conditions.



قيم البحث

اقرأ أيضاً

We consider nonlinear hyperbolic conservation laws, posed on a differential (n+1)-manifold with boundary referred to as a spacetime, and in which the flux is defined as a flux field of n-forms depending on a parameter (the unknown variable). We intro duce a formulation of the initial and boundary value problem which is geometric in nature and is more natural than the vector field approach recently developed for Riemannian manifolds. Our main assumption on the manifold and the flux field is a global hyperbolicity condition, which provides a global time-orientation as is standard in Lorentzian geometry and general relativity. Assuming that the manifold admits a foliation by compact slices, we establish the existence of a semi-group of entropy solutions. Moreover, given any two hypersurfaces with one lying in the future of the other, we establish a contraction property which compares two entropy solutions, in a (geometrically natural) distance equivalent to the L1 distance. To carry out the proofs, we rely on a new version of the finite volume method, which only requires the knowledge of the given n-volume form structure on the (n+1)-manifold and involves the {sl total flux} across faces of the elements of the triangulations, only, rather than the product of a numerical flux times the measure of that face.
We consider a class of multidimensional conservation laws with vanishing nonlinear diffusion and dispersion terms. Under a condition on the relative size of the diffusion and dispersion coefficients, we establish that the diffusive-dispersive solutio ns are uniformly bounded in a space Lp ($p$ arbitrary large, depending on the nonlinearity of the diffusion) and converge to the classical, entropy solution of the corresponding multidimensional, hyperbolic conservation law. Previous results were restricted to one-dimensional equations and specific spaces Lp. Our proof is based on DiPernas uniqueness theorem in the class of entropy measure-valued solutions.
This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws. The basic idea is that the meaningful objects are the fluxes, evaluated across domain boundaries over t ime intervals. The fundamental result in this treatment is the regularity of the flux trace in the multi-dimensional setting. It implies that a weak solution indeed satisfies the balance law. In fact, it is shown that the flux is Lipschitz continuous with respect to suitable perturbations of the boundary.
74 - Denis Serre 2021
We prove the decay of the L 2-distance from the solution u(t) of a hyperbolic scalar conservation law, to some convex, flow-invariant target sets.
We show the convergence of the zero relaxation limit in systems of $2 times 2$ hyperbolic conservation laws with stochastic initial data. Precisely, solutions converge to a solution of the local equilibrium approximation as the relaxation time tends to zero. The initial data are assumed to depend on finitely many random variables, and the convergence is then proved via the appropriate analogues of the compensated compactness methods used in treating the deterministic case. We also demonstrate the validity of this limit in the case of the semi-linear $p$-system; the well-posedness of both the system and its equilibrium approximation are proved, and the convergence is shown with no a priori conditions on solutions. This model serves as a prototype for understanding how asymptotic approximations can be used as control variates for hyperbolic balance laws with uncertainty.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا