A scalable, high-speed measurement-based quantum computer using trapped ions


الملخص بالإنكليزية

We describe a scalable, high-speed, and robust architecture for measurement-based quantum-computing with trapped ions. Measurement-based architectures offer a way to speed-up operation of a quantum computer significantly by parallelizing the slow entangling operations and transferring the speed requirement to fast measurement of qubits. We show that a 3D cluster state suitable for fault-tolerant measurement-based quantum computing can be implemented on a 2D array of ion traps. We propose the projective measurement of ions via multi-photon photoionization for nanosecond operation and discuss the viability of such a scheme for Ca ions.

تحميل البحث