ﻻ يوجد ملخص باللغة العربية
In this paper we investigated the most important family of proton conducting oxides, i.e. cerates, by means of pair distribution function analysis (PDF) obtained from total neutron scattering data. The results clearly demonstrates that the local structure plays a fundamental role in the protonation process. Oxygen vacancy creation by acceptor doping reduces the local structure symmetry which is then restored upon water uptake. This mechanism mainly involves the Ba-O shell which flexibility seems to be at the basis of the proton conduction mechanism, thus providing a direct insight on the design of optimal proton conducting materials.
We demonstrate the applicability of studying the proton dynamics in proton-conducting perovskites using neutron spin-echo spectroscopy, a powerful method hitherto neglected for studies of the proton dynamics in ceramic proton conductors. By combining
The layered structure of tetragonal Ni(CN)2, consisting of square-planar Ni(CN)4 units linked in the a-b plane, with no true periodicity along the c-axis, is expected to show anisotropic compression on the application of pressure. High-pressure neutr
We show that the growth of the heterostructure LaGaO3/SrTiO3 yields the formation of a highly conductive interface. Our samples were carefully analyzed by high resolution electron microscopy, in order to assess their crystal perfection and to evaluat
The electronic properties of single- and multi-cation transparent conducting oxides (TCOs) are investigated using first-principles density functional approach. A detailed comparison of the electronic band structure of stoichiometric and oxygen defici
Exclusive and kinematically complete high-statistics measurements of quasifree polarized $vec{n}p$ scattering have been performed in the energy region of the narrow resonance structure $d^*$ with $I(J^P) = 0(3^+)$, $M approx$ 2380 MeV/$c^2$ and $Gamm