ﻻ يوجد ملخص باللغة العربية
The gluon condensate is very sensitive to the QCD deconfinement transition since its value changes drastically with the deconfinement transition. We calculate the gluon condensate dependence of the heavy quark potential in AdS/CFT to study how the property of the heavy quarkonium is affected by a relic of the deconfinement transition. We observe that the heavy quark potential becomes deeper as the value of the gluon condensate decreases. We interpret this as a dropping of the heavy quarkonium mass just above the deconfinement transition, which is similar to the results obtained from QCD sum rule and from a bottom-up AdS/QCD model.
We investigate the quark-gluon mixed condensate based on an AdS/QCD model. Introducing a holographic field dual to the operator for the quark-gluon mixed condensate, we obtain the corresponding classical equation of motion. Taking the mixed condensat
The lowest dimensional gluon condensate $G_2$ is analyzed at finite temperature and chemical potential using a holographic model of QCD with conformal invariance broken by a background dilaton. Starting from the free energy of the model, the thermody
We investigate a connection between a renormalon ambiguity of heavy quark mass and the gluon condensate contribution into the quark dispersion law related with a virtuality defining a displacement of the heavy quark from the perturbative mass-shell, which happens inside a hadron.
The aim of this work is to study the holographic dual to the gauge theory with a nonzero gluon condensate. We check for consistency the holographic way of describing the condensate and calculate the expectation value of a small Wilson loop in the pre
We review the construction of gravitational solutions holographically dual to N=1 quiver gauge theories with dynamical flavor multiplets. We focus on the D3-D7 construction and consider the finite temperature, finite quark chemical potential case whe