ﻻ يوجد ملخص باللغة العربية
We present a panchromatic study, involving a multiple technique approach, of the circumstellar disc surrounding the T Tauri star IM Lupi (Sz 82). We have undertaken a comprehensive observational study of IM Lupi using photometry, spectroscopy, millimetre interferometry and multi-wavelength imaging. For the first time, the disc is resolved from optical and near-infrared wavelengths in scattered light, to the millimetre regime in thermal emission. Our data-set, in conjunction with existing photometric data, provides an extensive coverage of the spectral energy distribution, including a detailed spectrum of the silicate emission bands. We have performed a simultaneous modelling of the various observations, using the radiative transfer code MCFOST, and analysed a grid of models over a large fraction of the parameter space via Bayesian inference. We have constructed a model that can reproduce all of the observations of the disc. Our analysis illustrates the importance of combining a wide range of observations in order to fully constrain the disc model, with each observation providing a strong constraint only on some aspects of the disc structure and dust content. Quantitative evidence of dust evolution in the disc is obtained: grain growth up to millimetre-sized particles, vertical stratification of dust grains with micrometric grains close to the disc surface and larger grains which have settled towards the disc midplane, and possibly the formation of fluffy aggregates and/or ice mantles around grains.
Circumstellar discs are expected to be the nursery of planets. Grain growth within such discs is the first step in the planet formation process. The Bok globule CB 26 harbours such a young disc. We present a detailed model of the edge-on circumstella
Asteroids and comets (planetesimals) are created in gas- and dust-rich protoplanetary discs. The presence of these planetesimals around main-sequence stars is usually inferred from the detection of excess continuum emission at infrared wavelengths fr
We investigated the nature of the hitherto unresolved elliptical infrared emission in the centre of the ~20000 AU disc silhouette in M 17. We combined high-resolution JHKsLM band imaging carried out with NAOS/CONICA at the VLT with [Fe II] narrow ban
We present detailed modelling of the spectral energy distribution (SED) of the spiral galaxies NGC 891, NGC 4013, and NGC 5907 in the far-infrared (FIR) and sub-millimeter (submm) wavelengths. The model takes into account the emission of the diffuse
A clear understanding of the chemical processing of matter, as it is transferred from a molecular cloud to a planetary system, depends heavily on knowledge of the physical conditions endured by gas and dust as these accrete onto a disk and are incorp