ﻻ يوجد ملخص باللغة العربية
An AC electric field applied to a donor-bound electron in a semiconductor modulates the orbital character of its wave function, which affects the electrons spin dynamics via the spin-orbit interaction. Numerical calculations of the spin dynamics of a hydrogenic donor (Si) embedded in GaAs, using a real-space multi-band k.p formalism, show the high symmetry of the hydrogenic donor state results in strongly nonlinear dependences of the electronic g tensor on applied fields. A nontrivial consequence is that the most rapid Rabi oscillations occur for electric fields modulated at a subharmonic of the Larmor frequency.
Heat is detrimental for the operation of quantum systems, yet it fundamentally behaves according to quantum mechanics, being phase coherent and universally quantum-limited regardless of its carriers. Due to their robustness, superconducting circuits
Hybrid systems coupling quantum spin defects (QSD) and magnons can enable unique spintronic device functionalities and probes for magnetism. Here, we add electric field control of magnon-QSD coupling to such systems by integrating ferromagnet-ferroel
The spin field effect transistor envisioned by Datta and Das opens a gateway to spin information processing. Although the coherent manipulation of electron spins in semiconductors is now possible, the realization of a functional spin field effect tra
The polar covalent bond between a single Au atom terminating the apex of an atomic force microscope tip and a C atom of graphene on SiC(0001) is exposed to an external electric field. For one field orientation the Au-C bond is strong enough to sustai
Our world is composed of various materials with different structures, where spin structures have been playing a pivotal role in spintronic devices of the contemporary information technology. Apart from conventional collinear spin materials such as co