ﻻ يوجد ملخص باللغة العربية
The spectral problem for O(D) symmetric polynomial potentials allows for a partial algebraic solution after analytical continuation to negative even dimensions D. This fact is closely related to the disappearance of the factorial growth of large orders of the perturbation theory at negative even D. As a consequence, certain quantities constructed from the perturbative coefficients exhibit fast inverse factorial convergence to the asymptotic values in the limit of large orders. This quantum mechanical construction can be generalized to the case of quantum field theory.
In our previous paper I (del Valle--Turbiner, Int. J. Mod. Phys. A34, 1950143, 2019) it was developed the formalism to study the general $D$-dimensional radial anharmonic oscillator with potential $V(r)= frac{1}{g^2},hat{V}(gr)$. It was based on the
We outline a remarkably efficient method for generating solutions to quantum anharmonic oscillators with an x^{2M} potential. We solve the Schroedinger equation in terms of a free parameter which is then tuned to give the correct boundary condition b
It is shown that for the one-dimensional quantum anharmonic oscillator with potential $V(x)= x^2+g^2 x^4$ the Perturbation Theory (PT) in powers of $g^2$ (weak coupling regime) and the semiclassical expansion in powers of $hbar$ for energies coincide
A mapping is obtained relating radial screened Coulomb systems with low screening parameters to radial anharmonic oscillators in N-dimensional space. Using the formalism of supersymmetric quantum mechanics, it is shown that exact solutions of these p
A summary of the calculation of the color-planar and complete light quark contributions to the massive three-loop form factors is presented. Here a novel calculation method for the Feynman integrals is used, solving general uni-variate first order fa