ﻻ يوجد ملخص باللغة العربية
We consider an electrostatic qubit located near a Bose-Einstein condensate (BEC) of noninteracting bosons in a double-well potential, which is used for qubit measurements. Tracing out the BEC variables we obtain a simple analytical expression for the qubits density-matrix. The qubits evolution exhibits a slow ($propto1/sqrt{t}$) damping of the qubits coherence term, which however turns to be a Gaussian one in the case of static qubit. This stays in contrast to the exponential damping produced by most classical detectors. The decoherence is, in general, incomplete and strongly depends on the initial state of the qubit.
We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double well potential. It is demonstrated that the oscillator may experience various degrees of decoherence d
Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information proces
We study the decoherence speed limit (DSL) of a single impurity atom immersed in a Bose-Einsteincondensed (BEC) reservoir when the impurity atom is in a double-well potential. We demonstrate how the DSL of the impurity atom can be manipulated by engi
The dispersive interaction of a Bose-Einstein condensate with a single mode of a high-finesse optical cavity realizes the radiation pressure coupling Hamiltonian. In this system the role of the mechanical oscillator is played by a single condensate e
We propose a novel type of composite light-matter magnetometer based on a transversely driven multi-component Bose-Einstein condensate coupled to two distinct electromagnetic modes of a linear cavity. Above the critical pump strength, the change of t