ﻻ يوجد ملخص باللغة العربية
A long-range fifth force coupled to dark matter can induce a coupling to ordinary matter if the dark matter interacts with Standard Model fields. We consider constraints on such a scenario from both astrophysical observations and laboratory experiments. We also examine the case where the dark matter is a weakly interacting massive particle, and derive relations between the coupling to dark matter and the coupling to ordinary matter for different models. Currently, this scenario is most tightly constrained by galactic dynamics, but improvements in Eotvos experiments can probe unconstrained regions of parameter space.
Among the information provided by high energy neutrinos, a promising possibility is to analyze the effects of a Violation of Equivalence Principle (VEP) on neutrino oscillations. We analyze the recently released IceCube data on atmospheric neutrino f
Among the information provided by high energy neutrinos, a promising possibility is to analyze the effects of a Violation of Equivalence Principle (VEP) on neutrino oscillations. We analyze the IceCube data on atmospheric neutrino fluxes under the as
The symmetry of the theory of relativity under diffeomorphisms strongly depends on the equivalence principle. Violation of Equivalence Principle (VEP) can be tested by looking for deviations from the standard framework of neutrino oscillations. In re
We report here the results of operation of a torsion balance with a period of $sim 1.27 times 10^4$ s. The analysis of data collected over a period of $sim$115 days shows that the difference in the accelerations towards the Galactic Center of test bo
The recent high-statistics high-energy atmospheric neutrino data collected by IceCube open a new window to probe new physics scenarios that are suppressed in lower energy neutrino experiments. In this paper we analyze the IceCube atmospheric neutrino