Ultrametricity and clustering of states in spin glasses: A one-dimensional view


الملخص بالإنكليزية

We present results from Monte Carlo simulations to test for ultrametricity and clustering properties in spin-glass models. By using a one-dimensional Ising spin glass with random power-law interactions where the universality class of the model can be tuned by changing the power-law exponent, we find signatures of ultrametric behavior both in the mean-field and non-mean-field universality classes for large linear system sizes. Furthermore, we confirm the existence of nontrivial connected components in phase space via a clustering analysis of configurations.

تحميل البحث