ﻻ يوجد ملخص باللغة العربية
We consider the initial-boundary value problem for systems of quasilinear wave equations on domains of the form $[0,T] times Sigma$, where $Sigma$ is a compact manifold with smooth boundaries $partialSigma$. By using an appropriate reduction to a first order symmetric hyperbolic system with maximal dissipative boundary conditions, well posedness of such problems is established for a large class of boundary conditions on $partialSigma$. We show that our class of boundary conditions is sufficiently general to allow for a well posed formulation for different wave problems in the presence of constraints and artificial, nonreflecting boundaries, including Maxwells equations in the Lorentz gauge and Einsteins gravitational equations in harmonic coordinates. Our results should also be useful for obtaining stable finite-difference discretizations for such problems.
We classify positive solutions to a class of quasilinear equations with Neumann or Robin boundary conditions in convex domains. Our main tool is an integral formula involving the trace of some relevant quantities for the problem. Under a suitable con
A maximally rotating Kerr black hole is said to be extremal. In this paper we introduce the corresponding restrictions for isolated and dynamical horizons. These reduce to the standard notions for Kerr but in general do not require the horizon to be
We present a method for extracting gravitational radiation from a three-dimensional numerical relativity simulation and, using the extracted data, to provide outer boundary conditions. The method treats dynamical gravitational variables as nonspheric
Hormander proved global existence of solutions for sufficiently small initial data for scalar wave equations in $(1+4)-$dimensions of the form $Box u = Q(u, u, u)$ where $Q$ vanishes to second order and $(partial_u^2 Q)(0,0,0)=0$. Without the latter
We prove global stability results of {sl DiPerna-Lions} renormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions