ترغب بنشر مسار تعليمي؟ اضغط هنا

Group infall of substructures on to a Milky Way-like dark halo

247   0   0.0 ( 0 )
 نشر من قبل Yang-Shyang Li
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery that substructures/subhaloes of a galaxy-size halo tend to fall in together in groups in cosmological simulations, something that may explain the oddity of the MW satellite distribution. The original clustering at the time of infall is still discernible in the angular momenta of the subhaloes even for events which took place up to eight Gyrs ago, $z sim 1$. This phenomenon appears to be rather common since at least 1/3 of the present-day subhaloes have fallen in groups in our simulations. Hence, this may well explain the Lynden-Bell & Lynden-Bell ghostly streams. We have also found that the probability of building up a flattened distribution similar to the MW satellites is as high as $sim 80%$ if the MW satellites were from only one group and $sim 20%$ when five groups are involved. Therefore, we conclude that the `peculiar distribution of satellites around the MW can be expected with the CDM structure formation theory. This non-random assignment of satellites to subhaloes implies an environmental dependence on whether these low-mass objects are able to form stars, possibly related to the nature of reionization in the early Universe.



قيم البحث

اقرأ أيضاً

We analyse the dynamical properties of substructures in a high-resolution dark matter simulation of the formation of a Milky Way-like halo in a $Lambda$CDM cosmology. Our goal is to shed light on the dynamical peculiarities of the Milky Way satellite s. Our simulations show that about 1/3 of the subhalos have been accreted in groups. We quantify this clustering by measuring the alignment of the angular momentum of subhalos in a group. We find that this signal is visible even for objects accreted up to $z sim 1$, i.e. 8 Gyr ago, and long after the spatial coherence of the groups has been lost due the host tidal field. This group infall may well explain the ghostly streams proposed by Lynden-Bell & Lynden-Bell to orbit the Milky Way. Our analyses also show that if most satellites originate in a few groups, the disk-like distribution of the Milky Way satellites would be almost inevitable. This non-random assignment of satellites to subhalos implies an environmental dependence on whether these low-mass objects are able to form stars, possibly related to the nature of reionization in the early Universe. With this picture, both the ``ghostly streams and the ``disk-like configuration are manifestations of the same phenomenon: the hierarchical growth of structure down to the smallest scales.
Cold Dark Matter (CDM) theory, a pillar of modern cosmology and astrophysics, predicts the existence of a large number of starless dark matter halos surrounding the Milky Way (MW). However, clear observational evidence of these dark substructures rem ains elusive. Here, we present a detection method based on the small, but detectable, velocity changes that an orbiting substructure imposes on the stars in the MW disk. Using high-resolution numerical simulations we estimate that the new space telescope Gaia should detect the kinematic signatures of a few starless substructures provided the CDM paradigm holds. Such a measurement will provide unprecedented constraints on the primordial matter power spectrum at low-mass scales and offer a new handle onto the particle physics properties of dark matter.
112 - Shi Shao 2020
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have simi lar kinematics and spatial distribution to those of the bright satellites of the MW, specifically systems in which the majority of the satellites (8 out of 11) have nearly co-planar orbits that are also perpendicular to the central stellar disc. We find that the normal to the common orbital plane of the co-planar satellites is well aligned with the minor axis of the host dark matter halo, with a median misalignment angle of only $17.3^circ$. Based on this result, we infer that the minor axis of the Galactic dark matter halo points towards $(l,b)=(182^circ,-2^circ)$, with an angular uncertainty at the 68 and 95 percentile confidence levels of 22$^circ$ and 43$^circ$ respectively. Thus, the inferred minor axis of the MW halo lies in the plane of the stellar disc. The halo, however, is not homologous and its flattening and orientation vary with radius. The inner parts of the halo are rounder than the outer parts and well-aligned with the stellar disc (that is the minor axis of the halo is perpendicular to the disc). Further out, the halo twists and the minor axis changes direction by $90^circ$. This twist occurs over a very narrow radial range and reflects variations in the filamentary network along which mass was accreted into the MW.
We present the study of a set of N-body+SPH simulations of a Milky Way-like system produced by the radiative cooling of hot gas embedded in a dark matter halo. The galaxy and its gaseous halo evolve for 10 Gyr in isolation, which allows us to study h ow internal processes affect the evolution of the system. We show how the morphology, the kinematics and the evolution of the galaxy are affected by the input supernova feedback energy E$_{rm SN}$, and we compare its properties with those of the Milky Way. Different values of E$_{rm SN}$ do not significantly affect the star formation history of the system, but the disc of cold gas gets thicker and more turbulent as feedback increases. Our main result is that, for the highest value of E$_{rm SN}$ considered, the galaxy shows a prominent layer of extra-planar cold (log(T)<4.3) gas extended up to a few kpc above the disc at column densities of $10^{19}$ cm$^{-2}$. The kinematics of this material is in agreement with that inferred for the HI halos of our Galaxy and NGC 891, although its mass is lower. Also, the location, the kinematics and the typical column densities of the hot (5.3<log(T)<5.7) gas are in good agreement with those determined from the O$_{rm VI}$ absorption systems in the halo of the Milky Way and external galaxies. In contrast with the observations, however, gas at log(T)<5.3 is lacking in the circumgalactic region of our systems.
We simulate the tidal disruption of a collisionless N-body globular star cluster in a total of 300 different orbits selected to have galactocentric radii between 10 and 30 kpc in four dark matter halos: (a) a spherical halo with no subhalos, (b) a sp herical halo with subhalos, (c) a realistic halo with no subhalos, and (d) a realistic halo with subhalos. This allows us to isolate and study how the halos (lack of) dynamical symmetry and substructures affect the dispersal of tidal debris. The realistic halos are constructed from the snapshot of the Via Lactea II simulation at redshift zero. We find that the overall halos lack of dynamical symmetry disperses tidal debris to make the streams fluffier, consistent with previous studies of tidal debris of dwarf galaxies in larger orbits than ours in this study. On the other hand, subhalos in realistic potentials can locally enhance the densities along streams, making streams denser than their counterparts in smooth potentials. We show that many long and thin streams can survive in a realistic and lumpy halo for a Hubble time. This suggests that upcoming stellar surveys will likely uncover more thin streams which may contain density gaps that have been shown to be promising probes for dark matter substructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا