ﻻ يوجد ملخص باللغة العربية
We report the observation of quantized translational and rotational motion of molecular hydrogen inside the cages of C60. Narrow infrared absorption lines at the temperature of 6K correspond to vibrational excitations in combination with translational and rotational excitations and show well resolved splittings due to the coupling between translational and rotational modes of the endohedral H2 molecule. A theoretical model shows that H2 inside C60 is a three-dimensional quantum rotor moving in a nearly spherical potential. The theory provides both the frequencies and the intensities of the observed infrared transitions. Good agreement with the experimental results is obtained by fitting a small number of empirical parameters to describe the confining potential, as well as the ortho to para ratio.
Infrared absorption spectroscopy study of endohedral water molecule in a solid mixture of H$_2$O@C$_{60}$ and C$_{60}$ was carried out at liquid helium temperature. From the evolution of the spectra during the ortho-para conversion process, the spect
We measure the electron spin resonance spectrum of the endohedral fullerene molecule $^{15}mathrm{N@C}_{60}$ at pressures ranging from atmospheric pressure to 0.25 GPa, and find that the hyperfine coupling increases linearly with pressure. We present
Cavity-enhanced frequency comb spectroscopy for molecule detection in the mid-infrared powerfully combines high resolution, high sensitivity, and broad spectral coverage. However, this technique, and essentially all spectroscopic methods, is limited
We present a variational MonteCarlo (VMC) and lattice regularized diffusion MonteCarlo (LRDMC) study of the binding energy and dispersion curve of the water dimer. As a variation ansatz we use the JAGP wave function, an implementation of the resonati
The endohedral fullerene $^{15}mathrm{N@C}_{60}$ has narrow electron paramagnetic resonance lines which have been proposed as the basis for a condensed-matter portable atomic clock. We measure the low-frequency spectrum of this molecule, identifying