ترغب بنشر مسار تعليمي؟ اضغط هنا

Vortex qubit based on an annular Josephson junction containing a microshort

479   0   0.0 ( 0 )
 نشر من قبل Astria Price
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. N. Price




اسأل ChatGPT حول البحث

We report theoretical and experimental work on the development of a vortex qubit based on a microshort in an annular Josephson junction. The microshort creates a potential barrier for the vortex, which produces a double-well potential under the application of an in-plane magnetic field; The field strength tunes the barrier height. A one-dimensional model for this system is presented, from which we calculate the vortex depinning current and attempt frequency as well as the interwell coupling. Implementation of an effective microshort is achieved via a section of insulating barrier that is locally wider in the junction plane. Using a junction with this geometry we demonstrate classical state preparation and readout. The vortex is prepared in a given potential well by sending a series of shaker bias current pulses through the junction. Readout is accomplished by measuring the vortex depinning current.



قيم البحث

اقرأ أيضاً

The $varphi$ Josephson junction has a doubly degenerate ground state with the Josephson phases $pmvarphi$. We demonstrate the use of such a $varphi$ Josephson junction as a memory cell (classical bit), where writing is done by applying a magnetic fie ld and reading by applying a bias current. In the store state, the junction does not require any bias or magnetic field, but just needs to stay cooled for permanent storage of the logical bit. Straightforward integration with Rapid Single Flux Quantum logic is possible.
We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz, and integrate these components to implement both a monolithic amplitude/phase vector modulator and a quadrature mixer. The devices are act uated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.
We investigate the magnetic response of a superconducting Nb ring containing a ferromagnetic PdNi Josephson junction and a tunnel junction in parallel. A doubling of the switching frequency is observed within certain intervals of the external magneti c field. Assuming sinusoidal current-phase relations of both junctions our model of a dc-SQUID embedded within a superconducting ring explains this feature by a sequence of current reversals in the ferromagnetic section of the junction in these field intervals. The switching anomalies are induced by the coupling between the magnetic fluxes in the two superconducting loops.
A superconducting quantum interference device (SQUID) comprising 0- and $pi$-Josephson junctions (JJs), called $pi$-SQUID, is studied by the resistively shunted junction model. The $pi$-SQUID shows half-integer Shapiro-steps (SS) under microwave irra diation at the voltage $V$ = $(hbar/2e)Omega (n/2)$, with angular frequency $Omega$ and half-integer $n$/2 in addition to integer $n$. We show that the $pi$-SQUID can be a $pi$-qubit with spontaneous loop currents by which the half-integer SS are induced. Making the 0- and $pi$-JJs equivalent is a key for the half-integer SS and realizing the $pi$-qubit.
In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with large tunneling amplitude between the two macroscopic states. The latter can be controlled via the height and wells form of the potential barrier, which is determined by quantum-state engineering of the flux qubit circuit. The simplest circuit of the flux qubit is a superconducting loop interrupted by a Josephson nanoscale tunnel junction. The tunneling amplitude between two macroscopically different states can be essentially increased, by engineering of the qubit circuit, if tunnel junction is replaced by a ScS contact. However, only Josephson tunnel junctions are particularly suitable for large-scale integration circuits and quantum detectors with preset-day technology. To overcome this difficulty we consider here the flux qubit with high-level energy separation between ground and excited states, which consists of a superconducting loop with two low-capacitance Josephson tunnel junctions in series. We demonstrate that for real parameters of resonant superposition between the two macroscopic states the tunneling amplitude can reach values greater than 1K. Analytical results for the tunneling amplitude obtained within semiclassical approximation by instanton technique show good correlation with a numerical solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا