ﻻ يوجد ملخص باللغة العربية
Compressed Sensing aims to capture attributes of a sparse signal using very few measurements. Cand`{e}s and Tao showed that sparse reconstruction is possible if the sensing matrix acts as a near isometry on all $boldsymbol{k}$-sparse signals. This property holds with overwhelming probability if the entries of the matrix are generated by an iid Gaussian or Bernoulli process. There has been significant recent interest in an alternative signal processing framework; exploiting deterministic sensing matrices that with overwhelming probability act as a near isometry on $boldsymbol{k}$-sparse vectors with uniformly random support, a geometric condition that is called the Statistical Restricted Isometry Property or StRIP. This paper considers a family of deterministic sensing matrices satisfying the StRIP that are based on srm codes (binary chirps) and a $boldsymbol{k}$-sparse reconstruction algorithm with sublinear complexity. In the presence of stochastic noise in the data domain, this paper derives bounds on the $boldsymbol{ell_2}$ accuracy of approximation in terms of the $boldsymbol{ell_2}$ norm of the measurement noise and the accuracy of the best $boldsymbol{k}$-sparse approximation, also measured in the $boldsymbol{ell_2}$ norm. This type of $boldsymbol{ell_2 /ell_2}$ bound is tighter than the standard $boldsymbol{ell_2 /ell_1}$ or $boldsymbol{ell_1/ ell_1}$ bounds.
The sparsity in levels model recently inspired a new generation of effective acquisition and reconstruction modalities for compressive imaging. Moreover, it naturally arises in various areas of signal processing such as parallel acquisition, radar, a
The combination of space-time coding (STC) and continuous phase modulation (CPM) is an attractive field of research because both STC and CPM bring many advantages for wireless communications. Zhang and Fitz [1] were the first to apply this idea by co
Pairwise comparison matrices have received substantial attention in a variety of applications, especially in rank aggregation, the task of flattening items into a one-dimensional (and thus transitive) ranking. However, non-transitive preference cycle
We address the exact recovery of a k-sparse vector in the noiseless setting when some partial information on the support is available. This partial information takes the form of either a subset of the true support or an approximate subset including w
The problem of estimating a sparse signal from low dimensional noisy observations arises in many applications, including super resolution, signal deconvolution, and radar imaging. In this paper, we consider a sparse signal model with non-stationary m