ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra Confirmation of a Pulsar Wind Nebula in DA 495

106   0   0.0 ( 0 )
 نشر من قبل Zaven Arzoumanian
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Z. Arzoumanian




اسأل ChatGPT حول البحث

As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nonthermal nebula 40 in diameter exhibiting a power-law spectrum with photon index Gamma = 1.6+/-0.3, typical of a pulsar wind nebula. The implied spin-down luminosity of the neutron star, assuming a conversion efficiency to nebular flux appropriate to Vela-like pulsars, is ~10^{35} ergs/s, again typical of objects a few tens of kyr old. Morphologically, the nebular flux is slightly enhanced along a direction, in projection on the sky, independently demonstrated to be of significance in radio polarization observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5 from the point source, a distance consistent with the sizes of resolved wind termination shocks around many Vela-like pulsars. Finally, we argue based on synchrotron lifetimes in the estimated nebular magnetic field that DA 495 represents a rare pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron stars wind, and that this high magnetization factor may account for the nebulas low luminosity.



قيم البحث

اقرأ أيضاً

58 - A. Coerver 2019
Pulsar Wind Nebula (PWN) DA 495 (G65.7+1.2) was detected in TeV gamma-rays by the High Altitude Water Cherenkov Observatory (HAWC) in 2017 (2HWC J1953+294). Follow-up observations by the Very Energetic Radiation Imaging Telescope Array System (VERITA S) confirmed the association between 2HWC J1953+294 and DA 495 and found the TeV emission to be spatially coincident with the radio emission first reported in 1968. The detection of TeV gamma-rays from DA 495, along with past X-ray detection up to 10 keV, prompted high energy X-ray observations as part of the NuSTAR Galactic Legacy Survey. We present the results of these NuSTAR observations, combined with archival Chandra and XMM-Newton observations, and confirm the previous X-ray photon index of $Gamma_{2-20 rm keV} = 2.0 pm 0.1$. We find no spectral cutoff up to 20 keV. With the spectral information for DA 495 extended to TeV gamma-rays, we were able to perform analytical modeling to test leptonic and hadronic emission scenarios. The leptonic models can explain the broadband emission, but also imply a diffuse X-ray nebula of similar extent to the radio and TeV nebulae, which cannot be confirmed by our observations. The hadronic models can simultaneously explain the spectrum and the spatial extent in all wavelengths; however, we need a very high magnetic field strength pervading the radio and TeV nebulae and a surprisingly high particle kinetic energy. These requirements deepen the mystery of the physical nature of DA 495. Future observations in radio to infrared bands and spatially resolved $gamma$-rays can further constrain the physical conditions and radiation mechanisms in DA 495.
147 - Aya Bamba 2009
The results from a systematic study of eleven pulsar wind nebulae with a torus structure observed with the Chandra X-ray observatory are presented. A significant observational correlation is found between the radius of the tori, r, and the spin-down luminosity of the pulsars, Edot. A logarithmic linear fit between the two parameters yields log r = (0.57 +- 0.22) log Edot -22.3 +- 8.0 with a correlation coefficient of 0.82, where the units of r and Edot are pc and ergs s^-1, respectively. The value obtained for the Edot dependency of r is consistent with a square root law, which is theoretically expected. This is the first observational evidence of this dependency, and provides a useful tool to estimate the spin-down energies of pulsars without direct detections of pulsation. Applications of this dependency to some other samples are also shown.
136 - B. M. Gaensler MIT 2001
We present observations with the Chandra X-ray Observatory of the pulsar wind nebula (PWN) within the supernova remnant G0.9+0.1. At Chandras high resolution, the PWN has a clear axial symmetry; a faint X-ray point source lying along the symmetry axi s possibly corresponds to the pulsar itself. We argue that the nebular morphology can be explained in terms of a torus of emission in the pulsars equatorial plane and a jet directed along the pulsar spin axis, as is seen in the X-ray nebulae powered by other young pulsars. A bright clump of emission within the PWN breaks the axisymmetry and may correspond to an intermediate-latitude feature in the pulsar wind.
The nearby, middle-aged PSR B1055-52 has many properties in common with the Geminga pulsar. Motivated by the Gemingas enigmatic and prominent pulsar wind nebula (PWN), we searched for extended emission around PSR B1055-52 with Chandra ACIS. For an en ergy range 0.3-1 keV, we found a 4 sigma flux enhancement in a 4.9-20 arcsec annulus around the pulsar. There is a slight asymmetry in the emission close, 1.5-4 arcsec, to the pulsar. The excess emission has a luminosity of about 10^{29} erg s^{-1} in an energy range 0.3-8 keV for a distance of 350 pc. Overall, the faint extended emission around PSR B1055-52 is consistent with a PWN of an aligned rotator moving away from us along the line of sight with supersonic velocity, but a contribution from a dust scattering halo cannot be excluded. Comparing the properties of other nearby, middle-aged pulsars, we suggest that the geometry -- the orientations of rotation axis, magnetic field axis, and the sight-line -- is the deciding factor for a pulsar to show a prominent PWN. For PSR B1055-52, we also report on a flux decrease of at least 30% between the 2000 XMM-Newton and our 2012 Chandra observation. We tentatively attribute this flux decrease to a cross-calibration problem, but further investigations of the pulsar are required to exclude actual intrinsic flux changes.
70 - L. B^irzan 2015
PSR B0656+14 is a middle-aged pulsar with a characteristic age $tau_c=110$ kyr and spin-down power $dot{E}= 3.8times 10^{34}$ erg s$^{-1}$. Using Chandra data, we searched for a pulsar wind nebula (PWN) and found evidence of extended emission in a 3. 5-15 arcsec annulus around the pulsar, with a luminosity $L_{rm 0.5-8,keV}^{rm ext} sim 8times 10^{28}$ erg s$^{-1}$ (at the distance of 288 pc), which is a fraction of $sim 0.05$ of the non-thermal pulsar luminosity. If the extended emission is mostly due to a PWN, its X-ray efficiency, $eta_{rm pwn} = L_{rm 0.5-8,keV}^{rm ext}/dot{E} sim 2times 10^{-6}$, is lower than those of most other known PWNe but similar to that of the middle-aged Geminga pulsar. The small radial extent and nearly round shape of the putative PWN can be explained if the pulsar is receding (or approaching) in the direction close to the line of sight. The very soft spectrum of the extended emission ($Gammasim 8$), much softer than those of typical PWNe, could be explained by a contribution from a faint dust scattering halo, which may dominate in the outer part of the extended emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا